
Z-Way Developers Documentation

(c) Z-Wave.Me Team, based on Version 2.0.1

2

Contents

1 Introduction and Overview 7
1.1 How to use Z-Way . 7
1.2 Quick Start . 9
1.3 API Overview . 9

1.3.1 Z-Wave Device API . 10
1.3.2 Third Party Technology API . 11
1.3.3 JavaScript API (JS API) . 11
1.3.4 Virtual Device API . 12
1.3.5 Comparison . 12

2 The Z-Wave Device API 15
2.1 Executing a command from the GUI to the device and back 16
2.2 The Z-Wave Device API Data model . 18

2.2.1 The Data object . 18
2.2.2 The Data and Method Tree . 18
2.2.3 Device Data Visualization . 20
2.2.4 Commands to control Z-Way itself . 20
2.2.5 Job Queue Handling . 20

2.3 Function Class Implementation . 23
2.3.1 Inclusion . 23
2.3.2 Exclusion . 24
2.3.3 Mark Battery powered devices as failed 24
2.3.4 Remove Failed Nodes . 24
2.3.5 Include into different network . 25
2.3.6 Z-Wave chip reboot . 25
2.3.7 Request NIF from all devices . 25
2.3.8 Send controllers NIF . 25
2.3.9 Reset Controller . 26
2.3.10 Change Controller . 26
2.3.11 Routing Table . 26

2.4 JSON-API . 28
2.4.1 /ZWaveAPI/Run/<command> . 28
2.4.2 /ZWaveAPI/InspectQueue . 28
2.4.3 /ZWaveAPI/Data/<timestamp> . 29
2.4.4 Handling of updates coming from Z-Way 29

2.5 Command Class Implementation . 31
2.5.1 Switch Overview . 31

3

4 CONTENTS

2.5.2 Sensor Overview . 32
2.5.3 Meter Overview . 33
2.5.4 Thermostat Overview . 33
2.5.5 Door Lock Overview . 33
2.5.6 Device Configuration . 33
2.5.7 Interview Process . 33
2.5.8 Device Configuration . 34
2.5.9 Associations . 37

3 JavaScript API 39
3.1 The JavaScript Engine . 39
3.2 Accessing the JS API . 39
3.3 HTTP Access . 40
3.4 Authentication . 42

3.4.1 Roles and Login . 42
3.4.2 Creating Profile . 43

3.5 XML parser . 43
3.5.1 var x = new ZXmlDocument() . 43
3.5.2 x = new ZXmlDocument(”xml content”) 44
3.5.3 x.root . 44
3.5.4 x.isXML . 45
3.5.5 x.toString() . 45
3.5.6 x.findOne(XPathString) . 45
3.5.7 x.findAll(XPathString) . 45
3.5.8 XML elements . 45

3.6 Other JavaScript Extensions . 46
3.6.1 Debugging JavaScript code . 48

4 The Automation Subsystem 49
4.1 How to get to the automation engine . 49
4.2 The Event Bus . 49

4.2.1 Emitting events . 50
4.2.2 Catching (binding to) events . 50

4.3 Module-Syntax . 51
4.3.1 Module.json . 51
4.3.2 index.js . 51

4.4 Available Core Modules . 52
4.4.1 Cron, the timer module . 52
4.4.2 The Virtual Device Module . 53
4.4.3 DeviceCollection module . 53

5 Virtual Device API (vDev) 55
5.1 The virtual device . 55

5.1.1 Types and Ids . 55
5.1.2 Virtual Device Ids . 56
5.1.3 Virtual Device Type . 56
5.1.4 Access to Virtual Devices . 56
5.1.5 Virtual Device Usage / Commands . 56
5.1.6 Virtual Device Usage / Values . 57

CONTENTS 5

5.1.7 How to create your own virtual devices 57
5.2 Notifications and events . 58

6 Z-Way Data Model Reference 59
6.1 zway . 59
6.2 controller . 59
6.3 Devices . 61
6.4 Device . 61
6.5 Instances . 62

6.5.1 CommandClass . 63
6.6 Data . 63

7 Command Class Reference 65
7.1 FirmwareUpdate (0x7A/122) . 65
7.2 Alarm (0x71/113) . 66
7.3 Command Class Alarm Sensor (0x9c/156) . 66
7.4 Command Class Association (0x85/133) . 67
7.5 Command Class Basic (0x20/32) . 68
7.6 Command Class Battery (0x80/128) . 69
7.7 CentralScene (0x5B/91) . 69
7.8 ClimateControlSchedule (0x46/70) . 69
7.9 Command Class Clock (0x81/129) . 69
7.10 Command Class Configuration(0x70/112) . 70
7.11 Command Class DoorLock (0x62/98) . 71
7.12 Command Class Door Lock Logging (0x4C/76) 73
7.13 Command Class Indicator (0x87/135) . 73
7.14 Command Class Meter (0x32/50) . 74
7.15 MeterTableMonitor (0x3D/61) . 75
7.16 Command Class Multichannel Association (0x8e/142) 76
7.17 Command Class NodeNaming (0x77/119) . 77
7.18 PowerLevel (0x73/115) . 79
7.19 Command Class Protection (0x75/117) . 80
7.20 Command Class SceneActivation(0x2B/43) . 82
7.21 Command Class SceneControllerConf (0x2d/45) 82
7.22 Command Class SceneActuatorConf (0x2C/44) 83
7.23 Schedule (0x53/83) . 83
7.24 Command Class ScheduleEntryLock (0x4e/78) 84
7.25 Command Class SensorBinary (0x30/48) . 86
7.26 Command Class Sensor Configuration (0x9e/158) 86
7.27 Command Class Sensor Multilevel (0x31/49) . 87
7.28 Command Class Switch All (0x27/39) . 87
7.29 Command Class SwitchColor (0x33/51) . 88
7.30 Command Class SwitchBinary(0x25/37) . 90
7.31 Command Class SwitchMultilevel (0x26/38) . 91
7.32 Command Class ThermostatFanMode(0x44/68) 92
7.33 Command Class ThermostatFanState(0x45/69) 93
7.34 Command Class ThermostatMode (0x40/64) . 93
7.35 Command Class ThermostatOperatingState (0x42/66) 94
7.36 Command Class ThermostatSetPoint (0x43/67) 94

6 CONTENTS

7.37 Command Class UserCode (0x63/99) . 96
7.38 Command Class Time (0x8a/138) . 96
7.39 Command Class TimeParameters (0x8b/139) . 97
7.40 Command Class Wakeup (0x84/132) . 98
7.41 Other command classes not exposed on the API 99

8 Function Class Reference 101
TODOs: check cap 2,2.1,2.2, describe Restore Function

Chapter 1

Introduction and Overview

1.1 How to use Z-Way

Z-Way offers multiple Application Programmers Interfaces (API) that are partly built on each
other. Figure 1.1 shows the general structure of Z-Way with focus on the APIs. The most
important part of Z-Way is the Z-Wave core. The Z-Wave core uses the standard Sigma Designs
Serial API to communicate with a Z-Wave compatible transceiver hardware but enhanced with
some Z-Way specific functions such as Frequency Change. The standard interface is not public
but available for owners of the Sigma Designs Development Kit (SDK) 1 only.

The Z-Wave core services can be accessed directly using the Z-Wave Device API (zDev API).
There are two Z-Wave Device API versions available:

• JSON API: All functions are available using a JSON API implemented by an embedded
webserver. The ”Expert” UI is using this interface and serves both as programmers and
installers User Interface to operate the network and as reference implementation to demon-
strate the use of this API. The Expert UI is completely written in AJAX Technology.

• C Library API: All functions of the JSON API are available as C library function too. In
the folder /z-way-devel there are all header files with the function prototypes. All function
calls and the whole data model are identical. The URL

http://razberry.zwave.me/fileadmin/z-way-test.zip provides a sample application
written in standard C that makes use of the C level API to demonstrate its application.
Makefiles and project files for compilation on Linux and OSX are provided together with
the sample code.

The Z-Wave device API only allows the management of the Z-Wave network and
the control and management of the devices as such. No higher order logic except the so called
associations between two Z-Wave devices can be used here.

For all automation and higher order logic a Javascript automation engine is avail-
able. This engine is also shipped with Z-Way. There is also a possibility to create your own
home automation engine working in addition or instead of the original Z-Way Home Automation
engine. The implementation of the Java Script engine is organized in so called modules that

1The Sigma Designs SDK is available from Digikey (www.digikey.com). Depending on the hardware options
chosen the price varies between 2000 and 4000 USD

7

8 CHAPTER 1. INTRODUCTION AND OVERVIEW

Figure 1.1: Z-Way APIs and their use by GUI demos

1.2. QUICK START 9

implement a broad variety of applications using the underlying Z-Wave devices. The automation
logic can also access and use other third party technology stacks such as the EnOcean stack or
any technologies based on HTTP.

The Z-Way Home Automation (HA) solution offers multiple prefabricated modules. In ad-
dition Z-Way HA implements a Virtual Device API (vDev API). The Virtual Devices
API uses information from Z-Wave Device API to create virtual devices based in Z-Wave devices
and represent them in a unified way to upper level clients using Virtual Device API and provide
access to them by JSON based user interfaces. The Demo GUI z-way-ha uses this API and
demonstrates the use of the Virtual Device API.

1.2 Quick Start

The best way to learn about Z-Way is to use it. That is why the solutions comes with two
reference User Interfaces that can be accesses using a web browser. This allows to built, manage
and use a first wireless smart home network with Z-Wave device (and/or with devices using a
third party wireless technology such as EnOcean if supported by Z-Way) without writing a single
line of code.

Once Z-Way is installed turn your browser to the URL

http://YOURIP:8083/expert

or

http://YOURIP:8083/z-way-ha

. to use demonstation UIs available with Z-Way. The port 8083 is predefined (in automation/-
main.js).

In most cases you will want to control Z-Wave devices with Z-Way. Before a new device
can be used, the device needs to be included in the Z-Wave network managed by Z-Way. This
management function is accessible in the Expert UI under the Tab ’Network’. Just hit the button
”Include new Device” and then confirm the inclusion of the new device by hitting a button on
the device or the specific action defined for this device to confirm inclusion.

You may need to refer to the manual of the new device for further information on how to
confirm an inclusion by a controller.

The whole Expert UI is described in the Document ’Z-Way Expert User Interface Man-
ual’ and therefore no scope of this document.

1.3 API Overview

All communication between the User Interfaces and Z-Way is handled using a web-technology-
based JSON interface provided by a built in web server.

There are different Application Programmers Interfaces available for Z-Way that serve differ-
ent purposes:

1. Z-Wave Device API (zDev)

2. Third Party Technology APIs

10 CHAPTER 1. INTRODUCTION AND OVERVIEW

3. JavaScript API

4. Virtual Device API/Business Logic API (vDev)

1.3.1 Z-Wave Device API

The Z-Wave Device API implements the direct access to the Z-Wave network as such. All Z-
Wave devices are referred to by their unique identification in the wireless network - the Node
Id. Z-Wave devices may have different instances of the same function, also called channels (for
example sockets in a power strip). The Z-Wave Device API refers to them as daughter objects
of the physical device object identified by an instance Id. In case there only one instance the
instance Id = 0 is used.

All device variables and available commands in a Z-Wave device are grouped in so called
command classes. The Z-Wave API allows direct access to all parameters, values and commands
of these command class structures.

Beside the devices the Z-Wave Device API also offers access to the management interface of
the network. These functions are implemented as so called function classes within the object
’controller’ or on the top level ’z-way’ object.

The Z-Wave Device API can be accessed on the JSON API using the url path

http://YOURIP:8083/ZWaveAPI/*

Device objects or commands of these objects are accessed by

http://YOURIP:8083/ZWaveAPI/Run/devices[*].*

http://YOURIP:8083/ZWaveAPI/Run/devices[x].instances[y].*

http://YOURIP:8083/ZWaveAPI/Run/devices[x].instances[y].commandClasses[z].*

the whole data tree of the Z-Wave network is accessed using

http://YOURIP:8083/ZWaveAPI/Data/*

Attention: The Installer UI is a complete reference of the Z-Wave API. It shows
how to use all function it reveals the dynamics of the stack backend and visualizes
all internal variables accessible on the API. The chapter 2 describes the Z-Wave Device
API in detail.

The section ’Function Classes’ in chapter 2.3 explains the different management functions and
how they can be used and will use the Expert UI dialogs as application example. The section
’Function Class Reference’ in chapter 8 all function classes available.

The control of devices is implemented in Command Classes. The section ’Command Class
Implementation’ is again using certain dialogs of the Expert UI to explain how to access these
functions. The chapter 7 documents all command class functions.

In order to access device and network related data in Z-Way, knowledge of the Z-Way data
model is essential. The chapter 6 gives the necessary insight into the data model. All data of
Z-Way are exposed on the Expert UI.

1.3. API OVERVIEW 11

1.3.2 Third Party Technology API

Third party Technology APIs implement the same logic as the Z-Wave device API for other
wireless technologies such as EnOcean.

For more information please refer to the technology specific descriptions.

1.3.3 JavaScript API (JS API)

The Z-Wave Device API or any other Third Party technology API do not offer any higher order
logic support but the pure access to functions and parameters only.

Z-Way offers an automation engine to overcome this restriction. A server-side JavaScript Run
time environment allows writing JavaScript modules that are executed within Z-Way (means on
the server). The same time all functions of the JS API can also be access on the client side (the
web browser). This offers some cool debug and test capabilities. Among others it is possible to
write whole JS functions right into the URL or the browser.

The JS API can be accessed from the web browser with the URL

http://YOURIP:8083/JS/Run/*

Among others the whole Z-Wave Device API is available within the JS API using
the object ’zway’. As a result the following three statements refer to the very same function:

1. http://YOURIP:8083/ZWaveAPI/Run/devices[3].* Client Side URL access using
the Z-Wave Device API.

2. http://YOURIP:8083/JS/Run/zway.devices[3].*: Client Side URL access using the
JS API

3. zway.devices[3].*: Server Side access using the JS and the public zway object

Due to the scripting nature of JavaScript it is possible to ’inject’ code at run time using the
interface. Here a nice example how to use the Java Script setInterval function:

Listing 1.1: Polling of device #2

1 /JS/Run/ s e t I n t e r v a l (func t i on () {
2 zway . de v i c e s [2] . Bas ic . Get () ;
3 } , 300∗1000) ;

This code will, once ’executed’ as URL within a web browser, call the Get() command of the
command class Basic of Node Id 2 every 300 seconds.

A very powerful function of the JS API is the ability to bind functions to certain values of
the device tree. They get then executed when the value changes. Here is an example for this
binding. The device No. 3 has a command class SensorMultilevel that offers the variable level.
The following call - both available on the client side and on the server side - will bind a simple
alert function to the change of the variable.

Listing 1.2: Bind a function

4 zway . d ev i c e s [3] . S e n s o r M u l t i l e v e l . data [1] . l e v e l . bind (func t i on () {
5 debugPrint (’CHANGED TO: ’ + t h i s . va lue + ’ \n ’) ;
6 }) ;

12 CHAPTER 1. INTRODUCTION AND OVERVIEW

2

Chapter 3 and 6 describe the whole JS API in detail. The names and Ids of the different
command classes as well as their instance variables can be found in the Annex.

JavaScript modules can and will generate new functions that are accessible using the JSON
interface. For simplification function calls on the API (means on the client side) are written in
URL style starting with the word ’ZAutomation’:

/ZAutomation/JSfunction/JParameter == JSfunction(JParameter)

1.3.4 Virtual Device API

One of the (server side) JavaScript modules already available is a mapping of all physical devices
and functions into virtual devices. The purpose of this mapping is to simplify and to unify the
implementation of a Graphical User Interface.

All functions and all instances of a physical device - that are represented as daughter objects
in the Z-Wave Device API - are enrolled into individual virtual devices.

In case the Z-Wave API shows one single physical device with two channels, while the Virtual
Device API will show two devices with similar functionality. In case the Z-Wave API shows a
physical device with several different functions (like a binary switch and a analog sensor in one
device) the Virtual Device API (vDev API) will show them as several devices with one function
each.

The vDev is accessed using the HTTP REST API in a slightly different style than zDev API.
All devices, variables and commands are encoded into a URL style for easier handling in AJAX
code. A typical client side command in the vDev API looks like

http://YOURIP:8083/ZAutomation/api/v1/devices/ZWayVDev 6:0:37/command/off

’api’ points to the vDev API function, ’v1’ is just a constant to allow future extensions. The
devices are referred by a name that is automatically generated from the Z-Wave Device API.
The vDev also unifies the commands ’command’ and the parameters, here ’off’.

On the server side the very same command would be encoded in a JavaScript style.

dev = this.controller.devices.get(’ZWayVDev 6:0:37’); dev.command(’off’);

The vDev API also offers support for notifications, locations information, the use of other
modules etc. For details please refer to Chapter 5.

1.3.5 Comparison

Table 1.1 summarizes the functions of the different APIs.
For demo and sample code please refer to the following sources:

1. Z-Wave Device API JSON Expert UI on http://YOURIP:8083/expert

2. Z-Wave C Library API Header files in folder /z-way-devel

3. JavaScript API Modules in folder /automation

4. vDev API z-way-ha UI on http://YOURIP:8083/z-way-ha

2Please note that the Sensor Multilevel Command class data is an array index by the scale Id. Other command
classes such as Basic do not have this index but allow direct access using CommandClassName.data.level

1.3. API OVERVIEW 13

API Type Core Function Network
Management

Automation

Z-Wave Dev API (JSON) Access to physical network and
physical devices via JSON

Yes No

Z-Wave Dev API (C lib) Access to physical network and
physical devices via C style calls

Yes No

JavaScript API Access to physical network and
devices plus JS type functions

No Yes, via
zDev

vDev API Unified Access to functions of de-
vices, optimized for AJAX GUI

No Yes

Table 1.1: Different APIs of the Z-Way system

14 CHAPTER 1. INTRODUCTION AND OVERVIEW

Chapter 2

The Z-Wave Device API

This chapter describes the Z-Wave Device API and its use in detail. All examples will use the
HTTP/JSON API notation. Please note that the C library notation offers equal functionality.

The Z-Wave Device API is the north bound interface of the Z-Wave Core. This Z-Wave core
implement the whole control logic of the the Z-Wave network. The two main functions are

• Management of the network. This includes including and excluding devices, managing the
routing and rerouting of the network an executing some housekeeping functions to keep
the network clean and stable. In the Z-Wave terminology all these functions are called
’function classes’ and they are described in section 2.3. The function classes can be seen
as functions offered by the controller itself. Hence the variables and status parameters of
the networks are offered by an object called ’controller’.

• Execution of commands offered by the wireless devices as such switching switches and
dimming dimmers. Z-Wave groups the command and their corresponding variables into
so called command classes. The Z-Wave API offers access to these command classes with
their variables and their commands according to the abilities od the respective device.

The next chapters first explain the timings of the communication in a wireless Z-Wave network.
Then the data model is presented that reflects the real data and status information in the
network.

The description of function Classes and command Classes and their access using the JSON
API complete the description of the Z-Wave Device API. For a full reference of function classes
and command classes please refer to the Annex.

15

16 CHAPTER 2. THE Z-WAVE DEVICE API

Figure 2.1: Z-Way Timings

2.1 Executing a command from the GUI to the device and
back

Please note that all status variables accessible on the Z-Wave Device APIs are only
are proxy of the real value in the network.

To transport data between the real wireless device and the GUI multiple communication
instances are involved. The complexity of this communication chain shall be explained in the
following example:

Assuming the GUI shows the status of a remote switch and allows to change the switching
state of this device. When the user hits the switching button he expects to see the result of his
action as a changing status of the device in the GUI. The first step is to hand over the command
(SET) from the GUI to Z-Way using the JSON interface. Z-Way receives the command and will
confirm the reception to the GUI. Z-Way recognizes that the execution of the switching common
will likely result in a change of the status variable However Z-Way will not immediately change
the status variable but invalidate the actual value. This is the correct action because at the
moment when the command was received the status is the remote device has not been changed
yet but the status of the switch is now unknown. If the GUI polls the value it will still see
the old value but marked as invalid. Z-Way will not hand over the switching command to the
Z-Wave transceiver chip. Since it is possible that there are other command waiting for execution
(sending) by the Z-Wave transceiver chip the job queue is queuing them and will handle certain
priorities if needed. Z-Way has recognized that the command will likely change the status of
the remote device and is therefore adding another command to call the actual status after the
switching command was issued. The transceiver is confirming the reception of the command
and this confirmation is noted in the job queue. This confirmation however only means that
the transceiver has accepted the command and does neither indicate that the remote device has
receives it nor even confirming that the remote device has executed accordingly. The transceiver
will now try to send the commend wirelessly to the remote device. A successful confirmation
of the reception from the remote device is the only valid indicator that the remote device has

2.1. EXECUTING A COMMAND FROM THE GUI TO THE DEVICE AND BACK 17

received the command (again, not that it was executed!). The second command (GET) is now
transmitted the very same way and confirmed by the remote device. This device will now sent a
REPORT command back to Z-Way reporting the new status of the switching device. Now the
transceiver of Z-Way has to confirm the reception. The transceiver will then send the new value
to the Z-Way engine by issuing a commas via the serial interface. Z-Way receives the report and
will update the switching state and validate the value. From now on the GUI will receive a new
state when polling.

18 CHAPTER 2. THE Z-WAVE DEVICE API

2.2 The Z-Wave Device API Data model

Z-Way holds all data of the Z-Way network in a data holder structure. The data holder structure
is a hierarchical tree of data elements.

Following the object-oriented software paradigm the different commands targeting the net-
work or individual devices are also embedded into the data objects as object methods.

Each data element is handled in a data object that contains the data element and some
contextual data.

2.2.1 The Data object

Each Data element such as devices[nodeID].data.nodeId is an object with the following child
elements:

• value: the value itself

• name: the name of the data object

• updateTime: timestamp of the last update of this particular value

• invalidateTime: timestamp when the value was invalidated by issuing a Get command to
a device and expecting a Report command from the device

Every time a command is issued that will have impact on a certain data holder value the
time of the request is stored in ”invalidateTime” and the ”updated” flag is set to ”False”. This
allows to track when a new data value was requested from the network when this new data value
was provided by the network.

This is particularly true if Z-Way is sending a SET command. In this case the data value
is invalidated with the ”SET” commands and gets validated back when the result of the GET
command was finally stored in the data model.

To maintain compatibility with Javascript the data object has the following methods imple-
mented

• valueOf(): this allows to obmit .value in JS code, hence write as an example data.level =
255

• updated(): alias to updateTime

• invalidated(): alias to invalidateTime

These aliases are not enumerated if the dataholder is requested (data.level returns value: 255,
name: ”level”, updatedTime: 12345678, invalidatedTime: 12345678).

2.2.2 The Data and Method Tree

The root of the data tree has two important child objects:

• controller, this is the data object that holds all data and methods (commands, mainly
function classes) related to the Z-Way controller as such

• devices array, this is the object array that holds the device specific data and methods
(commands, mainly command classes).

Chapter 6 gives a complete overview of the data and method tree.

2.2. THE Z-WAVE DEVICE API DATA MODEL 19

Figure 2.2: Z-Way Object Tree Structure

Figure 2.3: Demo UI Dialog for Device Status

20 CHAPTER 2. THE Z-WAVE DEVICE API

Figure 2.4: Demo UI Dialog for Controller information

2.2.3 Device Data Visualization

One example how to use the Data in the object tree is the device status page provided by the
demo user interface in tab ”Device Control” of the Expert UI.

This tab gives an overview of the network status and the availability of each device. It shows
the time stamp of the last interaction between the controller and the device. For battery powered
devices the battery charging status, the time of the last wakeup and the estimated time for the
next wakeup is shown. An info icon indicates when the interview of a device was not completed.
Clicking on this device opens a window showing the interface status by command class. Please
refer to the manual section Interview for more information about the interview process.

The controller information tab shows all controller information. The buttons Show Controller
Data shows the internal Z-Way data structure related to the specific controller function of the
controller device. The button Show controller device data show the generic device related data
of the controller device.

The information given on this page is only relevant for advanced Z-Wave developers and for
debugging.

2.2.4 Commands to control Z-Way itself

The last set of commands and values are not related to the Z-Wave network or the Z-Wave
devices but to Z-Way itself. Chapter 6 lists all the commands and the values.

2.2.5 Job Queue Handling

The Job handling system is the core and heart of Z-Way. It is managing the different Function
class and command class calls to the Z-Wave network and dispatches incoming messages. Every
communication with the Z-Wave transceiver is scheduled into a job and queued that it can

2.2. THE Z-WAVE DEVICE API DATA MODEL 21

Figure 2.5: Job Queue Vizualization in Demo UI

transmitted over the serial hardware interface. The API allows to look into the work of the job
queue. The demo UI shows the Job queue under Tab ”Network” but in expert mode only.

The table shows the active jobs with their respective status and additional information.
Table 2.1 summarizes the different values displayed on the Job Queue visualization. While

these infos are certainly not relevant for end users of the system it is a great debug tool.

22 CHAPTER 2. THE Z-WAVE DEVICE API

n This column shows the number of sending attempts for a
specific job. Z-Way tries three times to dispatch a job to
the transceiver.

W,S,D: This shows the status of the job. If no indicator is shown
the job is in active state. This means that the controller
just tries to execute the job. ’W’ states indicated that
the controller believes that the target device of this job is
in deep sleep state. Jobs in ’W’ state will remain in the
queue to the moment when the target devices announces
its wakeup state by sending a wakeup notification to the
controller. Jobs in ’S’ state remain in the waiting queue to
the moment the security token for this secured information
exchanged was validated. ’D’ marks a job as done. The
job will remain in the queue for information purposes until
a job garbage collection removed it from the queue.

ACK: shows if the Z-Wave transceiver has issued an ACK mes-
sage to confirm that the message was successfully received
by the transceiver. This ACK however does not confirm
that the message was delivered successfully. A success-
ful delivery of a message will result in a D state of this
particular job. If the ACK field is blank, then no ACK
is expected. A . indicates that the controller expects an
ACK but the ACK was not received yet. A + indicates
that an ACK was expected and was received.

RESP shows if a certain command was confirmed with a valid
response. Commands are either answered by a response or
a callback. If the RESP field is blank, then no Response
is expected. A . indicates that the controller expects a
Response but the Response was not received yet. A +
indicates that a Response was expected and was received.

Cbk If the Cbk field is blank, then no callback is expected.
A . indicates that the controller expects a Callback but
the Callback was not received yet. A + indicates that a
Callback was expected and was received.

Timeout Shows the time left until the job is de queued
Node Id shows the id of the target node. Communication concern-

ing the network like inclusion of new nodes will have the
controller node id as target node ID. For command classes
command the node ID of the destination Node is shown.
For commands directed to control the network layer of the
protocol, the node id is zero.

Description shows a verbal description of the job
Progress shows a success or error message depending on the delivery

status of the message. Since Z-Way tries three times to
deliver a job up to 3 failure messages may appear. Buffer:
... shows the hex values of the command sent within this
job

Table 2.1: Parameters of the Job Queue Vizualization

2.3. FUNCTION CLASS IMPLEMENTATION 23

Figure 2.6: Expert UI Dialog for Networking functions

2.3 Function Class Implementation

The commands used to control the controller itself and ot manage the Z-Wave network are called
’function classes’. Most function classes used in the Sigma Designs Serial API are used by the
Z-Way lower layer function only but some of them are exposed to the Z-Wave Device API to
allow user interactions and network management.

The Expert UI is an excellent reference for the Function Classes. All relevant functions can
be monitored ’in action’. Hence the description of the network tab of the Expert UI is more or
less a complete reference to the function classes needed in a UI implementation.

2.3.1 Inclusion

You can include devices by pressing the ’Include Device’ button. This turns the controller into
an inclusion mode that allows including a device. A status information line indicates this status.
The inclusion of a device is typically confirmed with a triple press of a button of this particular
device. However, please refer to the manual of this particular device for details how to include
them into a Z-Wave network. The inclusion mode will time out after about 20 seconds or is
aborted by pressing the ’Stop Include’ button.

If the network has a special controller with SIS function (Z-Way will try to activate such as
function on default, hence this mode should always be active if the USB hardware used by Z-
Way supports it) the inclusion of further devices can also be accomplished by using the include
function of any portable remote control which is already included into the network. A short
explanation above the include button will inform about the ways devices can be included.

The Inclusion function is implemented using the function class AddNodeToNetwork(flag)
with flag=1 for starting the inclusion mode and flag=0 for stopping the inclusion mode. Please
refer to the chapter 8 for details on how to use this function.

24 CHAPTER 2. THE Z-WAVE DEVICE API

2.3.2 Exclusion

You can exclude devices by pressing the ’Exclude Device’ button. This turns the controller
into an exclusion mode that allows excluding a device. The exclusion of a device is typically
confirmed with a triple press of a button of this particular device as well. However, please refer to
the manual of this device for details how to exclude them into a Z-Wave network. The exclusion
mode will time out after about 20 seconds or is aborted by pressing the ’Stop Exclude’ button.
It is possible to exclude all kind of devices regardless if they were included in the particular
network of the excluding controller.

If a node is not longer in operation it cant be excluded from the network since exclusion needs
some confirmation from the device. Please use the ’Remove Failed Node’ function in this case.
Please make sure that only failed nodes are moved this way. Removed but still function nodes -
called phantom nodes will harm the network stability.

The Exclusion function is implemented using the function class RemoveNodeToNetwork(flag)
with flag=1 for starting the exclusion mode and flag=0 for stopping the exclusion mode. Please
refer to the chapter 8 for details on how to use this function.

2.3.3 Mark Battery powered devices as failed

This function allows marking battery-powered devices as failed. Only devices marked as failed
can be excluded from the network without using the exclusion function. Typically multiple failed
communications with a device result in this marking. Battery powered devices are recognized
as sleeping in the controller and therefore all communication attempts with this device will
be queued until a wakeup notification from this device is received. A faulty battery operated
device will never send a wakeup notification and hence there is never a communication, which
would result in a failed node status. Battery operated devices can therefore be manually marked
as faulty. Make sure to only mark and subsequently remove devices that are faulty or have
disappeared. A device, which was removed with this operation but is still functioning may
create malfunctions in the network.

This function is no Function class but sets the internal ’failed’ variable of the device object.

2.3.4 Remove Failed Nodes

Z-Way allows removing a node, if and only if this node was detected as failed by the Z-Wave
transceiver. The network will recognize that communication with a device fails multiple times
and the device cant be reached using alternating routes either. The controller will then mark
the device as ’failed’ but will keep it in the current network configuration. Any successful
communication with the device will remove the failed mark. Only devices marked as failed can
be removed using the ’Remove Failed Node’ function.

If you want to remove a node that is in operation use the ’Exclude’ Function.

This function is implemented using the function class RemoveFailedNode(node id) with
node id as the node id of the device to be removed. Please refer to the chapter 8 for details on
how to use this function. It is also possible to replace a failed node by a new node using the
function class RemoveFailedNode(node id). Please refer to the chapter 8 for details too.

The function IsFailedNode(node id) can be used to detect if a certain node is failed. The
Z-Wave transceiver will try to contact the device wirelessly and will then update the failed-status
inside the transceiver and also the ’is failed’ flag of the device object in Z-Way.

2.3. FUNCTION CLASS IMPLEMENTATION 25

2.3.5 Include into different network

Z-Way can join a Z-Wave network as secondary controller. It will change its own Home ID to
the Home ID of the new network and it will learn all network information from the including
controller of the new network. To join a different network, the primary controller of this new
network need to be in the inclusion mode.

Z-Way needs to be turned into the so called learn mode using the button ’Start Include in
others network’. The button Stop Include in others network can be used to turn off the Learn
mode, which will time out otherwise or will stop if the learning was successful.

Please be aware that all existing relationships to existing nodes will get lost when the
Z-Way controller joins a different network. Hence it is recommended to join a different network
only after a reset with no other nodes already included.

The ’Learn’ function is implemented using the function class SetLearnMode(flag) with
flag=1 for starting the learn mode and flag =0 for stopping the learn mode. Please refer to the
chapter 8 for details on how to use this function.

2.3.6 Z-Wave chip reboot

This function will perform a soft restart of the firmware of the Z-Wave controller chip without
deleting any network information or setting. It may be necessary to recover the chip from a
freezing state. A typical situation of a required chip reboot is if the Z-Wave chip fails to come
back from the inclusion or exclusion state.

The reboot function is implemented using the function class SerialAPISoftReset(). Please
refer to the chapter 8 for details on how to use this function.

2.3.7 Request NIF from all devices

This function will call the Node Information Frame from all devices in the network. This may
be needed in case of a hardware change or when all devices where included with a portable USB
stick such as e.g. Aeon Labs Z-Stick. Mains powered devices will return their NIF immediately,
battery operated devices will respond after the next wakeup.

This function controls a Z-Way controller function that will send out a function class Re-
questNodeInformation(node) to all nodes in the network. The function can also be called
for one single node only. Please refer to the chapter 8 for details on how to use this function.

2.3.8 Send controllers NIF

In certain network configurations it may be required to send out the Node Information Frame of
the Z-Way controller. This is particularly useful for some some remote controls scene activation
function. The manual of the remote control will refer to this requirement and give further
information when and how to use this function.

This function is implemented with the function class SerialAPIApplicationNodeInfo with
plenty of parameters. These parameters are partly set by Z-Way but particularly the Command
classes supported (parameter ’NIF’) can be changed by editing the file defaults.xml. Please refer
to the chapter 8 for details on how to use this function the chapter about the translation files on
how to change defaults.xml

26 CHAPTER 2. THE Z-WAVE DEVICE API

Figure 2.7: Demo UI dialog for Routing Table

2.3.9 Reset Controller

The network configuration (assigned node Ids and the routing table and some other network
management specific parameters) is stored in the Z-Wave transceiver chip and will therefore
even survive a complete reinstallation of the Z-Way software.

The function ’Reset Controller’ erases all values stored in the Z-Wave chip and sent the chip
back to factory defaults. This means that all network information will be lost without
recovery option.

This function is implemented with the function class SetDefault(). Please refer to the
chapter 8 for details on how to use this function.

2.3.10 Change Controller

The controller change function allows to handover the primary function to a different controller in
the network. The function works like a normal inclusion function but will hand over the primary
privilege to the new controller after inclusion. Z-Way will become a secondary controller of the
network. This function may be needed during installation of larger networks based on remote
controls only where Z-Way is solely used to do a convenient network setup and the primary
function is finally handed over to one of the remote controls.

This function is implemented with the function class ControllerChange(). Please refer to
the chapter 8 for details on how to use this function.

2.3.11 Routing Table

The routing table of the Z-Wave network is shown in the tab network as well. It indicates how
two devices of the Z-Wave network can communicate with each other. If two devices are in direct
range (they can communicate without the help of any other node) the cross point of the two
devices in the table is marked as dark green. The color light green indicates that the two nodes
are not in direct range but have more than one alternating routes with one node between. This
is still considered as a stable connection. The yellow color indicates that there are less than two
one-hop routes available between the two nodes. However there may be more routes but with
more nodes between and therefore considered as less stable.

A red indicator shows that there are no good short connections between the two nodes. This
does not mean that they are unable to communicate with each other but any route with more
than 2 routers between Z-Way is considering as not reliable, even taking into account that Z-
Wave supports routes with up to four devices between. Grey cells indicate the connection to the
own Node ID.

The general rule of thumb is: ’The greener the better’.

2.3. FUNCTION CLASS IMPLEMENTATION 27

The table lists all nodes on the y-axis and the neighborhood information on the x-axis. On
the right hand side of the table a timestamp shows when the neighborhood information for a
given node was reported.

In theory the table should be totally symmetric, however different times of the neighborhood
detection may result in different neighborhood information of the two devices involved.

The neighbor information of the controller works with an exception. The Z-Wave implemen-
tation used in current Z-Wave transceiver does not allow requesting an update of the neighbor list
for the controller itself. The neighborhood information displayed for the controller is therefore
simply wrong.

Battery powered devices will report their neighbors when woken up and report their mains
powered neighbor correctly. However mains powered devices will report battery-powered devices
as neighbors only when routes are updated twice. This is less critical because battery powered
devices cant be used as routers and are therefore not relevant for calculating route between two
nodes anyway.

The context menu command ’Network Reorganization’ allows re-detecting all neighborhood
information (battery powered devices will report after their next wakeup!) Please refer to the
manual section ’Network Stability’ for further information about the use of this function.

The routing table is stored in the Z-Wave transceiver and can be read using the func-
tion class GetRoutingTableLine(node id) for a given node ID. The function RequestN-
odeNeighbourUpdate(nodeid) will cause a certain node Id to redirect its wireless neighbors.
It makes sense to call the GetRoutingTable function right after successful callback of the Re-
questNodeNeighbourUpdate function.

28 CHAPTER 2. THE Z-WAVE DEVICE API

2.4 JSON-API

JSON API allows to execute commands on server side using HTTP POST requests (currently
GET requests are also allowed, but this might be deprecated in future). The command to execute
is taken from the URL.

All functions are executed in form

http://YOURIP:8083/<URL>

2.4.1 /ZWaveAPI/Run/<command>

This executes zway.<command> in JavaScript engine of the server. As an example to switch
ON a device no 2 using the command class BASIC (The ID of the command class BASIC is
0x20, for more information about the IDs of certain command classes please refer to the Annex)
its possible to write:

/ZWaveAPI/Run/devices[2].instances[0].commandClasses[0x20].Set(255)

or

/ZWaveAPI/Run/devices[2].instances[0].Basic.Set(255)

The Z-Way Expert GUI has a JavaScript command runCmd(<command>) to simplify such
operations. This function is accessable in the Javascript console of your web browser (in Chrome
you find the JavaScript console unter View->Debug->JS Console). Using this feature the com-
mand in JS console would look like

runCmd(’devices[2].instances[0].Basic.Set(255)’)

The usual way to access a command class is using the format
’devices[nodeId].instances[instanceId]. commandClasses[commandclassId]’. There are ways to
simplify the syntax:

• ’devices[nodeId].instances[instanceId].Basic’ is equivalent to
’devices[nodeId].instances[instanceId].commandClasses[0x20]’

• the instances[0] can be obmitted: ’devices[nodeId].instances[instanceId].Basic’ then turns
into ’devices[nodeId].Basic’

Each Instance object has a device property that refers to the parent device it belongs to.
Each Command Class Object has a device and an instance property that refers to the instance
and the device this command class belongs to.

Data holder object have properties value, updateTime, invalidateTime, name, but for com-
patibility with JS and previous versions we have valueOf() method (allows to omit .value in
JS code, hence write ”data.level == 255”), updated (alias to updateTime), invalidated (alias
toinvalidateTime). These aliases are not enumerated if the dataholder is requested (data.level
returns value: 255, name: ”level”, updatedTime: 12345678, invalidatedTime: 12345678).

2.4.2 /ZWaveAPI/InspectQueue

This function is used to visualize the Z-Way job queue. This is for debugging only but very
useful to understand the current state of Z-Way engine.

2.4. JSON-API 29

2.4.3 /ZWaveAPI/Data/<timestamp>

Returns an associative array of changes in Z-Way data tree since <timestamp>. The array
consists of (<path>: <JSON object>) object pairs. The client is supposed to assign the new
<JSON object> to the subtree with the <path> discarding previous content of that subtree.
Zero (0) can be used instead of <timestamp> to obtain the full Z-Way data tree.

The tree have same structure as the backend tree (Figure 2.2) with one additional root element
”updateTime” which contains the time of latest update. This ”updateTime” value should be
used in the next request for changes. All timestamps (including updateTime) corresponds to
server local time.

Each node in the tree contains the following elements:

• value the value itself

• updateTime timestamp of the last update of this particular value

• invalidateTime timestamp when the value was invalidated by issuing a Get command to
a device and expecting a Report command from the device

The object looks like:

Listing 2.1: JSON Data Structure

7 {
8 ” [path from the root] ” : [updated subt ree] ,
9 ” [path from the root] ” : [updated subt ree] ,

10 . . .
11 updateTime : [cur rent timestamp]
12 }

Examples for Commands to update the data tree look like:

Get all data: /ZWaveAPI/Data/0

Get updates since 134500000 (Unix timestamp): /ZWaveAPI/Data/134500000

Please note that during data updates some values are updated by big subtrees. For example,
in Meter Command Class value of a scale is always updated as a scale subtree by [scale].val
object (containing scale and type descriptions).

2.4.4 Handling of updates coming from Z-Way

A good design of a UI is linking UI objects (label, textbox, slider, ...) to a certain path in the
tree object. Any update of a subtree linked to UI will then update the UI too. This is called
bindings.

For web applications Z-Way Web UI contains a library called jQuery.triggerPath (extention
of jQuery written by Z-Wave.Me), that allows to make such links between objects in the tree
and HTML DOM objects. Use

var tree;

jQuery.triggerPath.init(tree);

during web application initialization to attach the library to a tree object. Then run

30 CHAPTER 2. THE Z-WAVE DEVICE API

jQuery([objects selector]).bindPath([path with regexp], [updater function], [additional
arguments]);

to make binding between path changes and updater function. The updater function would
be called upon changes in the desired object with this pointing to the DOM object itself, first
argument pointing to the updated object in the tree, second argument is the exact path of this
object (fulfilling the regexp) and all other arguments copies additional arguments. RegExp allows
only few control characters: * is a wildcard, (1—2—3) - is 1 or 2 or 3.

Please not that the use of the triggerpath extension is one option to handle the
incoming data. You can also extract all the interesting values right when the data
is received and bind update functions to them.

2.5. COMMAND CLASS IMPLEMENTATION 31

2.5 Command Class Implementation

Z-Wave device functions are controlled by command classes. A command class can be have one
or multiple commands allowing the use of a certain function of the device. Command classes
are organized by functions, e.g. the command class ”Switch Binary” allows to switch a binary
switch. Hence the number of supported command classes defines the functionality and the value
of a device.

Z-Wave defines quite a few command classes but a lot of them are not implemented in any
device. Hence, Z-Way will not implement them either. Command Classes consist of two types
of commands:

• commands for users, most of them are either ”GET” commands asking for a value or status
from a remote device, or they are ”SET” commands setting a certain value and therefore
causing a certain action.

• commands for configuration

The commands for configuration are used by Z-Way to build the data model used and to
manage the device itself but they are not made public for users. The command classes available
for users are listed in chapter 7.

Commands to Z-Wave devices take time to be executed. In case the device is awake (mains
powered or FLIRS) the delay may be well below one second but for battery powered devices the
controller has to wait for the next scheduled wakeup in order to send the command.

In case the command is calling a value update from e.g. a sensor the successful execution
of the command only means that the request was accepted by the wireless device. In order to
really update a value the device itself needs to send a wireless command back to the controller
that needs to be accepted by the controller.

Each data element that is available in a remote wireless device (e.g. a switch) is also stored
in Z-Way. First of all there is the assumption that the data value of the remote device and the
corresponding data value in Z-Way are identical.

Most commands of command classes are eighter a ”GET” asking for an update of an value
or they are a ”SET” - setting a new value. Setting a new value may also cause an action on
the remote side. As an example switching a binary switch means in Z-Wave command classes
changing the switching state value wirelessly.

Z-Way will never ”just” update the local corresponding value of the real remote value but
always ask the remote device after a successful ”SET” command for an update of the remote
value using a ”GET” command. This means that the local - displayable - value of a certain
remote device will only update after some delay.

The process can be examined using the ”Device Control” dialog in the Expert User Interface.

2.5.1 Switch Overview

This page gives a table style overview of all actuators of the Z-Wave network. Actuators are
devices with some kind of switching function such as

• Digital (on/off) switches,

• Light Dimmer,

• Motor Controls for Venetian blinds, window bind,

• Motor Control to open/close doors and windows.

32 CHAPTER 2. THE Z-WAVE DEVICE API

Figure 2.8: Demo UI Dialog for Switches

Figure 2.9: Demo UI Dialog for Sensors

Beside the name of the device, the location and the type of device the actual status and the
timestamp of this status are shown.

Of course it is possible to switch the devices and to update the status of the device.

A little icon indicates how the device will react to a switch all devices command (will switch,
will not switch, will react to off command only or to on command only).

The commands to control the different actors apply the command classes ”Switch Multilevel”
and ”Switch Binary”. Please refer to Chapter 7 for details how to use these command classes.

2.5.2 Sensor Overview

This page gives a table style overview of all sensors of the Z-Wave network. Sensors are devices
able to report measured values. Sensors can report binary or analog values. Beside the name of
the device, the location and the type of sensor the actual sensor value and the timestamp of this
value are shown. It is possible to ask for an update of the sensor value.

The update command of the sensor interface and the values shown are using the command
classes ”Sensor Multilevel” and ”SensorBinary”. Please refer to Chapter 7 for details how to use
these command classes.

2.5. COMMAND CLASS IMPLEMENTATION 33

2.5.3 Meter Overview

This page gives a table style overview of all meters of the Z-Wave network. Meters are devices
able to report accumulated values. Beside the name of the device, the location and the type of
meter the actual meter value and the timestamp of this value are shown. It is possible to ask for
an update of the meter value.

The update command of the meter interface and the values shown are using the command
class ”Meter”. Please refer to Chapter 7 for details how to use the meter command class.

2.5.4 Thermostat Overview

This page gives a table style overview of all thermostats of the Z-Wave network. Depending on
the thermostat capabilities reported, the dialog will allow to change the thermostat mode and/or
change the setpoint temperature for the thermostat mode selected.

Please refer to Chapter 7 for details how to use the thermostat setpoint and thermostat mode
command classes.

2.5.5 Door Lock Overview

This page gives a table style overview of all door locks of the Z-Wave network. Depending on
the door lock reported, the dialog will allow to open/close the door and differentiate on door
handles.

Please refer to Chapter 7 for details how to use the door lock, user code and door lock logging
command classes.

2.5.6 Device Configuration

Beside the command class to directly control devices and update device values there are more
commands that are used to built the data model of the device and to get configuration values.

The device also allow certain configurations itself. The demo UI shows the use of these
command classes in the Tab ”Device Configuration”. The device configuration fulfills three
basic tasks:

• The interview process after inclusion of the device

• The configuration of the device according to user requirements and needs.

• Setting Cause/effect relationships. This means that certain devices can directly control
other devices.

2.5.7 Interview Process

After the inclusion of a new device Z-Way will interview this very device. The interview is a
series of commands Z-Way is sending to the device in order to learn the capabilities and functions
of this device.

Depending on the capabilities announced in the Node Information Frame that was received
during the inclusion, Z-Way will ask further questions to get more detailed information. The
interview process may take some seconds since more questions may be required to ask depending
in certain answers given. Since all functions of a device are grouped in so called Command
Classes each command class announced in the Node Information frame will typically cause its
part of the interview. The interview will be executed in three different steps:

34 CHAPTER 2. THE Z-WAVE DEVICE API

1. In case there is a Version Command Class ask for the Version of the device and the versions
of all Command Classes announced in the Node Information frame. Otherwise Version 1
is assumed.

2. In case there is a Multi Channel Command class announced, ask for the number of the
capabilities of the different channels and repeat Step 3 for each channel.

3. Ask for all capabilities of all command classes.

4. Do some auto configurations if needed.

The Device Status tab will indicate if the interview was successfully completed. The blue
information icon shows if the interview was not complete. Clicking on this icon opens a dialog
with all command classes and the status of their respective interviews. A complete interview is
important in order to have access to all functions of the device included. Incomplete interviews
may also be a reason for malfunctions of the network. There are several reasons why an interview
may not be completed.

1. A battery-operated device may be gone into sleep mode too early. In this case it is possible
to wake up the device manually to complete the interview. Sometimes manual wakeup is
needed several times.

2. The device does not fully comply with the Z-Wave protocol. This is particularly possible
for devices that were brought to market before 2008. The current more sophisticated
certification process makes sure that devices are 100% compatible to the Z-Wave product
when they hit the market. Please check online ressources on wikis and forums for further
details and possible ways to fix these kinds of problems.

3. The device does not have a reliable communication route to the controller. Interview com-
munication typically use longer packets than normal polling communication. This makes
the interview communication more vulnerable against weak and instable communication
links. Its possible that the controller is able to include a device and even receive confirma-
tion of a polling request but still not being able to complete the interview. However this is
a rare case.

4. The device may be simply broken.

Most of the command exchange during interview is using commands dedicated for the inter-
view process. They are not exposed on the API.

2.5.8 Device Configuration

Each Z-Wave device is designed to work out of the box after inclusion without further configu-
ration. However, it may be suitable and in certain contexts even required to do a device specific
configurations.

The device configuration page allows to further configure the device and to access certain
additional information about the device. The tab is grouped into several sections. The sections
can be toggled from invisible to visible and back by clicking on the headlines:

• Select Z-Wave Device Description Record

• Device Description

• Configurations

2.5. COMMAND CLASS IMPLEMENTATION 35

• Actions with configurations

• Advanced Actions

Select Z-Wave Device Description Record After a successful inclusion Z-Way will inter-
view the device to gather further information.

Certain information such as names of association groups, the brand name of the device and
the parameters of further configuration values can not be detected during interview. Z-Way
uses a device database with product description files to obtain this information. In order to
identify the right device description record, certain parameters of the interview are used. If
these parameters match exactly one device description record, this very record is loaded and its
content is shown on the device configuration page automatically.

If the information from the device is sufficient to select one specific record from the database
this section of the tab is hidden. If it is not possible to identify the correct device description
record the user can manually choose the correct record. It is also possible to manually change
the selection of the device description by unhiding this section and clicking on the Select Device
Description Record button.

Device Description The upper part of the dialog shows some descriptive values of the device.
The Z-Wave device type is the only value generated solely from the interview data. All other
data are taken from the device description record.

• Zone: ... the zone/room the device is assigned to. Will be manually defined in Zone-tab.

• Brand: the product code or brand name of the device. This will be taken from the device
description record.

• Device Type: ... the type of Z-Wave device as reported by the device during inclusion.

• Description: a verbal description of the function. This will be taken from the device
description record.

• Interview Stage: shows the progress of the interview process. This information is generated
by Z-Way.

• Inclusion Note: how to (re-) include the device. This will be taken from the device
description record.

• Wakeup Note: this will be taken from the device description record.

• Documents: If the device description record offers links to manuals or other online docu-
ments there are shown here. This will be taken from the device description record.

• Device State: Status of the device plus number of packets queued for this device

There are a couple of reasons why no device description record was found:

1. There is no record for the device available. Since there are always new devices on the
market Z-Way needs to catch up and update its device database. If your device is not
found, updating to the most recent version of Z-Way may help.

36 CHAPTER 2. THE Z-WAVE DEVICE API

Figure 2.10: Configuration Dialog

2. The interview was not finished to the point where enough parameters were detected to
identify the correct device description record. You may manually choose the correct device
description record using the button Select Device Description Record. A dialog box will be
opened for manual selection of the product (if available). The manual selection of a device
description record is only needed if no record was found on default.

3. The interview of the device was completed but the device does not offer enough information
to identify the correct device. You may manually choose the correct device description
record using the button Select Device Description Record. A dialog box will be opened for
manual selection of the product (if available). The manual selection of a device description
record is only needed if no record was found on default.

4. There is more than one device description record matching the information gathered during
interview. This is particularly possible if a vendor sells devices with different firmware and
functions without properly updating the firmware version information. You may manually
choose the correct device description record using the button Select Device Description
Record. A dialog box will be opened for manual selection of the product (if available). The
manual selection of a device description record is only needed if no record was found on
default.

Device Configuration This section will, if device description record is loaded, show device
specific configuration values including their possible parameters and a short description of the
configuration value. You may change these values according to your needs.

Actions with configurations The most important action in regard to the configuration is to
apply the configuration to the device. This is only done when the button Apply configuration for
this device is hit. This button is therefore even shown, when the rest of the tab part is hidden.

• Mains Powered Devices: The settings will become effective immediately after hitting the
button.

• Battery Powered Devices: The settings will become effective after the next wakeup of the
device, as shown in the Device Status tab.

2.5. COMMAND CLASS IMPLEMENTATION 37

• Battery Powered Controllers (remote controls or wall controllers): The settings will only
become effective if the devices are woken up manually. Refer to the controller manual for
more information on how to wake up the device. Appendix B may also give further advice.

If there are many similar devices in a network, it is desirable to just apply one working
configuration to all these devices. This can be done using the function ’Copy from other Device’.

The set of defined configuration values is stored for every device. Therefore its possible to
pick a different device and reuse its configuration values for the device to be configured. The
Save function of the bottom context menu allows saving the configuration for further use and
reuse.

Actions with configurations This function requests the selected device to send its Node
Information frame (NIF) to the controller. It can be used instead of triple pressing a button on
the device itself that would also instruct the device to send it NIF. The NIF is needed to know
device capabilities.

Delete Configuration of this device in section Actions with configuration This
function deletes the stored configuration for this device. This function is for debugging purposes
only.

Force Interview in section Advanced This functions forces to redo the whole interview.
All previous interview data will be deleted. This function is for debugging purposes only.

Show Interview Results in section Advanced This function shows the result of the
interview. This function is for debugging purposes only. For information about reasons for
incomplete interview please refer to the manual section Device Status.

The bottom context menu function Reset Configuration deletes all configurations stored in
Z-Way, but does not affect devices!

The configuration dialog documents the use of the command classes ”Association”, ”Protec-
tion”, ”Configuration” and ”Switch All”.

2.5.9 Associations

If there was no previous device of the same type installed, the interface will show the values as
read from the device. If there was already a device of the same kind installed, there may exist a
stored default configuration for this particular device. Then the setup in the device may differ
from the default configuration stored in Z-Way.

• Gray Icon: This Node ID is stored in the device but its not stored in the default config-
uration of the Z-Way. You can double click this device to store this setting in the Z-Way
default configuration of this device type.

• Red Icon: This Node ID is stored locally but not in the association group of the device yet.
Apply the settings to transmit the setting into the device. In case of a battery operated
device you need to wakeup the device in order to store the configuration.

• Black Icon: This Node ID is stored both in the device and in the local configuration of
Z-Way.

38 CHAPTER 2. THE Z-WAVE DEVICE API

Hint: The auto configuration function of Z-Way will place the node ID of the Z-Way controller
in all association groups if possible. This allows the activation of scenes from these devices.

All management of Associations is handled by the command class ”Association”, In case the
target device is a multi channel device the command class ”Multi Channel Association” is used.
Please refer to chapter 7 for details how to use these command classes.

Chapter 3

JavaScript API

The JavaScript API mirrors all functions of the Z-Wave device API and combines them with the
ability to run JavaScript code on top of the Z-Wave Device functions and variables.

There are two ways to run JavaScript functions in Z-Way.

• They can be executed in the web browser URL string (using /JS/Run/ prefix)

• They can be implemented as module running in the backend or be stored in a file on the
server side.

Both options have their pros and cons. Running JS code in the browser is a very nice and
convenient way to test things but the function is not persistent.

Writing a module requires some more knowledge and debugging is more complicated. On the
other hand the possibilities of JavaScript in the module are almost infinite and goes far beyond
just accessing Z-Wave device. JavaScript as any other language can make use of services available
in the Internet and combine them in any possible way with information from the Z-Wave network
and can execute functions within the Z-Wave network but the same time on any place accessible
via Internet based services. In theory there is not even a need to have Z-Wave device in order to
make use of the powerful JavaScript engine. As an example you can write a JavaScript module
polling weather data from the internet and depending on certain well defined conditions the same
module can send you a short message on your mobile. Both functions are by the way already
implemented as open source modules and can be accessed and studied for further modification
or use.

3.1 The JavaScript Engine

Z-Way uses the JavaScript engine provided by Google referred to as V8. You find more informa-
tion about this JavaScript implementation on https://code.google.com/p/v8/. V8 implements
JavaScript according to the specification ECMA 5 1.

Z-Way extends the basic functionality provided by V8 with plenty of application specific
functions.

3.2 Accessing the JS API

The JS API can be accessed from any web browser with the URL

1http://www.ecma-international.org/publications/standards/Ecma-262.htm

39

40 CHAPTER 3. JAVASCRIPT API

http://YOURIP:8083/JS/Run/* All functions of the Z-Wave Device API can be used by
JavaScript. They are encapsulated in the ’zway’ object. This object has the same structure as
defined in chapter 6. The client side access to the device data is done like

http://YOURIP:8083/JS/Run/zway.devices[x].* Due to the scripting nature of JavaScript
its possible to ’inject’ code at run time using the interface. Here a nice example how to use the
Java Script setInterval function:

Listing 3.1: Polling device #2

13 /JS/Run/ s e t I n t e r v a l (func t i on () {
14 zway . d ev i c e s [2] . Bas ic . Get () ;
15 } , 300∗1000) ;

This code will, once ’executed’ as URL within a web browser, call the Get() command of the
command class Basic of Node ID 2 every 300 seconds.

A very powerful function of the JS API is the ability to bind functions to certain values
of the device tree. they get then executed when the value changes. Here an example for this
binding. The device No. 3 has a command class SensorMultilevel that offers the variable level.
The following call - both available on the client side and on the server side - will bind a simple
alert function to the change of the variable.

Listing 3.2: Bind a function

16 zway . d ev i c e s [3] . S e n s o r M u l t i l e v e l . data [1] . l e v e l . bind (func t i on () {
17 debugPrint (’CHANGED TO: ’ + t h i s . va lue + ’ \n ’) ;
18 }) ;

3.3 HTTP Access

The JavaScript implementation of Z-Way allows to directly accessing HTTP objects.
The http request is much like jQuery.ajax(): r = http.request(options);
Here’s the list of options:

• url - required. Url you want to request (might be http, https, or maybe even ftp);

• method optional. HTTP method to use (currently one of GET, POST, HEAD). If not
specified, GET is used;

• headers optional. Object containing additional headers to pass to server:

1 headers : {
2 ”Content−Type” : ” t ext /xml” ,
3 ”X−Requested−With” : ”RaZberry / 1 . 5 . 0 ”
4 }

• data used only for POST requests. Data to post to the server. May be either a string (to
post raw data) or an object with keys and values (will be serialized as ’key1=value1&key2=value2&’);

• auth optional. Provides credentials for basic authentication. It is an object containing
login and password:

3.3. HTTP ACCESS 41

1 auth : {
2 l o g i n : ’ username ’ ,
3 password : ’ s e c r e t ’
4 }

• contentType optional. Allows to override content type returned by server for parsing data
(see below);

• async optional. Specifies whether request should be sent asynchronously. Default is false.
In case of synchronous request result is returned immediately (as function return value),
otherwise function exits immediately, and response is delivered later thru callbacks.

• success, error and complete optional, valid only for async requests. Success callback is
called after successful request, error is called on failure, complete is called nevertheless
(even if success/error callback produces exception, so it is like ’finally’ statement);

Response (as stated above) is delivered either as function return value, or as callback param-
eter. Is is always an object containing following members:

• status HTTP status code (or -1 if some non-HTTP error occurred). Status codes from
200 to 299 are considered success;

• statusText status string;

• URL response URL (might differ from url requested in case of server redirects);

• headers object containing all the headers returned by server;

• contentType content type returned by server;

• data response data.

Response data is handled differently depending on content type (if contentType on request
is set, it takes priority over server content type):

• application/json and text/x-json are returned as JSON object;

• application/xml and text/xml are returned as XML object;

• application/octet-stream is returned as binary ArrayBuffer;

• string is returned otherwise.

In case data cannot be parsed as valid JSON/XML, it is still returned as string, and additional
parseError member is present.

1 http . r eque s t ({
2 u r l : ” http :// s e r v e r . com” (s t r i ng , r equ i r ed) ,
3 method : ”GET” (GET/POST/HEAD, opt iona l , default ”GET”) ,
4

5 headers : (object , op t i ona l)
6 {
7 ”name” : ” va lue ” ,
8 . . .
9 } ,

42 CHAPTER 3. JAVASCRIPT API

10

11 auth : (object , op t i ona l)
12 {
13 ” l o g i n ” : ”xxx” (s t r i ng , r equ i r ed) ,
14 ”password” : ”∗∗∗” (s t r i ng , r equ i r ed)
15 } ,
16

17 data : (object , opt iona l , for POST only)
18 {
19 ”name” : ” va lue ” ,
20 . . .
21 }
22 −− OR −−
23 data : ”name=value & . . . ” (s t r i ng , opt iona l , for POST only) ,
24

25 async : t rue (boolean , opt iona l , default f a l s e) ,
26

27 s u c c e s s : f unc t i on (rsp) {} (funct ion , opt iona l , for async only) ,
28 e r r o r : f unc t i on (rsp) {} (funct ion , opt iona l , for async only) ,
29 complete : f unc t i on (rsp) {} (funct ion , opt iona l , for async only)
30 }) ;
31

32

33 re sponse :
34 {
35 s t a t u s : 200 (in t ege r , −1 for non−http e r r o r s) ,
36 s tatusText : ”OK” (s t r i n g) ,
37 u r l : ” http :// s e r v e r . com” (s t r i n g) ,
38 contentType : ” t ext /html” (s t r i n g) ,
39 headers : (ob j e c t)
40 {
41 ”name” : ” va lue ”
42 } ,
43 data : r e s u l t (ob j e c t or s t r i ng , depending on content type)
44 }

3.4 Authentication

3.4.1 Roles and Login

The JS interfaces requires authentication and authorization of the user resp. the user interface.
The backend knows four user profiles every user account has to be assigned to:

• Admin = has all right, particularly the right to include/create/delete new devices

• Local = has all right, particularly the right to include/create/delete new devices but does
not need an authentication when connected from localhost

• Anonymous = an unauthenticated user, no rights

3.5. XML PARSER 43

• User = A normal user, rights can be defined

On default there are two users setup in the backend

• login: admin: password: admin, the administrators account

• login: local: password: local, the account for local access

A user/User interface must obtain a credential using the following HTTPS request:

IP:8083/smarthome/#/?login=admin&password=admin 2

When authenticate successfully the server will return a credential that is stored as a cookie.
The cookie exists two times, one cookie is for all services /̈änd one for the smarthome UI only
/smarthome.

The credential has to be transmitted with every request to the APIs. Access to the Expert
UI required admin rights. The credential should be transmitted within the HTTP Request
header but the server will request the cookie with the credential in case the information was not
transmitted in the header.

3.4.2 Creating Profile

To create a new profile just send a simple JSON POST with the following structure:

1 Method POST \/ZAutomation\/ api \/v1\/ p r o f i l e s
2 {
3 ”name” : ”User1” ,
4 ” r o l e ” : 2 ,
5 ”password” : ” user1 ” ,
6 ” l o g i n ” : ” user1 ” ,
7 ” lang ” : ”de” ,
8 ” c o l o r ” : ”#80ad80” ,
9 ” h i d e a l l d e v i c e e v e n t s ” : f a l s e ,

10 ” h ide sy s t em event s ” : f a l s e ,
11 ” h i d e s i n g l e d e v i c e e v e n t s ” : [] ,
12 ”rooms” : [0 , 2 , 3] , // [0] i s d e f a u l t
13 ” dashboard ” : [] ,
14 ” i n t e r v a l ” : 2000 // update i n t e r v a l von smarthome ui
15 }

3.5 XML parser

ZXmlDocument object allows to convert any valid XML document into a JSON object and vice
versa.

3.5.1 var x = new ZXmlDocument()

Create new empty XML document

2The password and login can be sent unencrypted; hence the use of SSL/HTTPS is strongly recommended

44 CHAPTER 3. JAVASCRIPT API

3.5.2 x = new ZXmlDocument(”xml content”)

Create new XML document from a string

3.5.3 x.root

Get/set document root element. Elements are got/set in form of JS objects:

1 {
2 name : ”node name” , mandatory
3 t ex t : ” va lue ” , opt iona l , for t ex t nodes
4 a t t r i b u t e s : { op t i on a l
5 name : ” value ” ,
6 . . .
7 } ,
8 c h i l d r e n : [opt iona l , should conta in a v a l i d ob j e c t o f same type
9 { . . . }

10]
11 }

For example:

1 (new ZXmlDocument(’<weather><c i t y id=”1”><name>Zwickau</name><temp>2.6</temp></c i ty><c i t y id=”2”><name>Moscow</name><temp>−23.4</temp></c i ty ></weather> ’)) . root =
2 {
3 ” c h i l d r e n ” : [
4 {
5 ” c h i l d r e n ” : [
6 {
7 ” text ” : ”Zwickau” ,
8 ”name” : ”name”
9 } ,

10 {
11 ” text ” : ” 2 . 6 ” ,
12 ”name” : ”temp”
13 }
14] ,
15 ” a t t r i b u t e s ” :{
16 ” id ” : ”1”
17 } ,
18 ”name” : ” c i t y ”
19 } ,
20 {
21 ” c h i l d r e n ” : [
22 {
23 ” text ” : ”Moscow” ,
24 ”name” : ”name”
25 } ,
26 {
27 ” text ” : ”−23.4” ,
28 ”name” : ”temp”
29 }

3.5. XML PARSER 45

30] ,
31 ” a t t r i b u t e s ” :{
32 ” id ” : ”2”
33 } ,
34 ”name” : ” c i t y ”
35 }
36] ,
37 ”name” : ” weather ”
38 }

3.5.4 x.isXML

This hidden readonly property allows to detect if object is XML object or not (it is always true).

3.5.5 x.toString()

Converts XML object into a string with valid XML content.

3.5.6 x.findOne(XPathString)

Returns first matching to XPathString element or null if not found.

1 x . findOne (’ / weather / c i t y [@id=”2”] ’) // re turns on ly c i t y tag f o r Moscow
2 x . findOne (’ / weather / c i t y [name=”Moscow ”]/ temp/ text () ’) // re turns temperature in Moscow

3.5.7 x.findAll(XPathString)

Returns array of all matching to XPathString elements or empty array if not found.

1 x . f i n d A l l (’ / weather / c i t y ’) // re turns a l l c i t y t a g s
2 x . f i n d A l l (’ / weather / c i t y /name/ text () ’) // re turns a l l c i t y names

3.5.8 XML elements

Each XML element (tag) in addition to properties described above (text, attributes, children)
have hidden readonly property parent pointing to parent object and the following methiods:

• insertChild(element) Insert new child eleemnt

• removeChild(element) Remove child element

• findOne(XPathString) Same as on root object, but relative (no leading / needed in XPath-
String

• findAll(XPathString) Same as on root object, but relative (no leading / needed in XPath-
String

ZXmlDocument is returned from http.request() when content type is ”application/xml”, ”tex-
t/xml” or any other ending with ”+xml”. Namespaces are not yet supported.

46 CHAPTER 3. JAVASCRIPT API

3.6 Other JavaScript Extensions

fs.list(folder)

This returns list of items in the folder or undefined if not folder is not existing.

fs.stat(file)

This returns one of the following values:

• 1) undefined if object does not exist or not readable

• 2) object { type: ’file’, size: <size>} if it is a file

• 3) object { type: ’dir’ } if it is a folder

fs.loadJSON(filename)

This function reads a file from the file system and loads it into the memory. The file must contain
a valid JSON object. The only argument is the name of the file including full pathname of the
local file system. The functions returns the full JSON object or null in case of error.

fs.load(filename)

This function reads a file from the file system and returns it’s content as a string. The only
argument is the name of the file including full pathname of the local file system. The functions
returns null in case of error.

executeFile(filename) and executeJS(string)

Loads and executes a particular JavaScript file from the local filesystem or executes JavaScript
code represented in string (like eval in browsers).

The script is executed withig the global namespace.
Remark: If an error occurred during the execution it won’t stop from further execution, but

erroneous script will not be executed completely. It will stop on the first error. Exceptions in
the callee can be trapped in the caller using standard try-catch mechanism.

system(command)

The command system() allows to execute any shell level command available on the operating
system. It will return the shell output of the command. On default the execution of system
commands is forbidden. Each command executed need to be permitted by putting one line with
the starting commands in the file automation/.syscommands or in an different automation folder
as specified in config.xml.

Timers

Timers are implemented exactly as they are used in browsers. They are very helpfull for periodical
and delayed operations. Timeout/period is defined in milliseconds.

• timerId = setTimeout(function() , timeout)

• timerId = setInterval(function() , period)

3.6. OTHER JAVASCRIPT EXTENSIONS 47

• clearTimeout(timerId)

• clearInterval(timerId)

loadObject(object name) and saveObject(object name, object)

Loads and saves JSON object from/to storage. These functions implements flat storage for
application with access to the object by it’s name. No folders are available.

Data is saved in automation/storage folder. Filenames are made from object names by
stripping characters but [a-ZA-Z0-9] and adding checksum from original name (to avoid name
conflicts).

exit()

Stops JavaScript engine and shuts down Z-Way server

allowExternalAccess(handlerName) and listExternalAccess()

allowExternalAccess allows to register HTTP handler. handlerName can contain strings like
aaa.bbb.ccc.ddd - in that case any HTTP request starting by /aaa/bbb/ccc/ddd will be handled
by a function aaa.bbb.ccc.ddd() if present, otherwise aaa.bbb.ccc(), ... up to aaa(). Handler
should return object with at least properties status and body (one can also specify headers like
it was in http.request module).

listExternalAccess returns array with names of all registered HTTP handlers.
Here is an example how to attach handlers for /what/timeisit and /what:

1 what = func t i on () {
2 return { s t a t u s : 500 , body : ’What do you want to know ’ } ;
3 } ;
4

5 what . t i m e i s i t = func t i on () {
6 return { s t a t u s : 200 , body : (new Date ()) . t oS t r i ng () }
7 } ;
8

9 a l lowExterna lAcces s (”what”) ;
10 a l lowExterna lAcces s (”what . t i m e i s i t ”) ;

debugPrint(object, object, ...)

Prints arguments converted to string to Z-Way console. Very usefull for debuggin. For conve-
nience one can map ’console.log()’ to debugPrint().

This is how it was done in automation/main.js in Z-Way Home Automation engine:

1 var conso l e = {
2 l og : debugPrint ,
3 warn : debugPrint ,
4 e r r o r : debugPrint ,
5 debug : debugPrint ,
6 logJS : func t i on () {
7 var ar r = [] ;
8 for (var key in arguments)

48 CHAPTER 3. JAVASCRIPT API

9 ar r . push (JSON. s t r i n g i f y (arguments [key])) ;
10 debugPrint (a r r) ;
11 }
12 } ;

3.6.1 Debugging JavaScript code

Change in config.xml debug-port to 8183 (or some other) turn on V8 debugger capability on
Z-Way start.

1 <con f i g>
2 . . .
3 <debug−port >8183</debug−port>
4
5 </con f i g>

node-inspector debugger tool is required. It provides web-based UI for debugging similar to
Google Chrome debug console.

You might want to run debugger tool on another machine (for example if it is not possible
to install it on the same box as Z-Way is running on).

Use the following command to forward debugger port defined in config.xml to your local
machine:

1 ssh −N USER@IP OF Z−WAY MACHINE −L 8 1 8 3 : 1 2 7 . 0 . 0 . 1 : 8 1 8 3

(for RaZberry USER is pi)
Install node-inspector debugger tool and run it:

1 npm i n s t a l l −g node−i n s p e c t o r
2 node−i n s p e c t o r −−debug−port 8183

Then you can connect to http://IP OF MACHINE WITH NODE INSPECTOR:8080/debug?port=8183
If debugging is turned on, Z-Way gives you 5 seconds during startup to reconnect debugger

to Z-Way (refresh the page of debugger Web UI withing these 5 seconds). This allows you to
debug startup code of Z-Way JavaScript engine from the very first line of code.

Chapter 4

The Automation Subsystem

The automation subsystem allows writing automation scripts using Javascript. It uses the ECMA
compatible Javascript Engine described in chapter 3. All the code realizing the automation engine
is written in Javascript itself and is available as open source for further study and modification.

The automation engine performs different actions based on events. The actions are either
signal commands or scripts that can add additional logic and conditions. Events are either
generated from the Z-Wave network or from an outside sources such as the Internet or even from
a user interaction is causing certain actions, either within the Z-Wave network (e.g. switching
a light) or outside Z-Wave (e.g. sending a email). In Z-Way all automation is organized in so
called modules. The subsequent manual will explain how these modules work and how to create
own modules.

Attention: There is no Graphical User Interface for the automation engine at
this moment in time. You will need a text editor such as joe, textwrangler or vi to
edit certain files.

4.1 How to get to the automation engine

The starting point for automation in Z-Way is called config.xml and is located in the main folder
of Z-Way. The statement for the automation engine looks like

< automation− dir > pathToAutomationCodeBase < /automation− dir >

Assuming the automation is like on default in the subdirectory /automation the statement
should look like

< automation− dir > automation < /automation− dir >

The automation folder consists of several files and subdirectories. The most important file
of the automation is called config.json. This file contains the information about all automation
modules and their instances. This file is automatically generated and should be changed without
proper knowledge.

4.2 The Event Bus

All communication from and to the automation modules is handled by events. An event is a
structure containing certain information that is exchanged using a central distribution place, the

49

50 CHAPTER 4. THE AUTOMATION SUBSYSTEM

event bus. This means that all modules can send events to the event bus and can listen to
event in order to execute commands on them. All modules can ’see’ all events but need to filter
out their events of relevance. The core objects of the automation are written in JS and they are
available as source code in the sub folder ’classes’:

• AutomationController.js: This is the main engine of the automation function

• AutomationModule.js: the basic object for the module

The file main.js is the startup file for the automation system and it is loading the three
classes just mentioned. The subfolder /lib contains the key JS script for the Event handling:
eventemitter.js.

4.2.1 Emitting events

The ’Event emitter’ emits events into the central event bus. The event emitter can be called
from all modules and scripts of the automation system. The syntax is:

controller.emit(eventName, args1, arg2, ...argn)

The event name ’eventName’ has to be noted in the form of ’XXX.YYY’ where ’XXX’ is the
name of the event source (e.g. the name of the module issuing the event or the name of the
module using the event) and ’YYY’ is the name of the event itself. To allow a scalable system
it makes sense to name the events by the name of the module that is supposed to receive and to
manage events. This simplifies the filtering of these events by the receiver module(s).

Certain event names are forbidden for general use because they are already used in the existing
modules. One example are events with the name cron.XXXX that are used by the cron module
handling all timer related events.

Every event can have a list of arguments developers can decide on. For the events used by
preloaded modules (first and foremost the cron module) this argument structure is predefined.
For all other modules the developer is free to decide on structure and content. It is also possible
to have list fields and or any other structure as argument for the event

One example of an issued event can be

emit(mymodule.testevent, Test, [event1, event2])

4.2.2 Catching (binding to) events

The controller object, part of every module, offers a function called ’on()’ to catch events. The
’on(name, function())’ function subscribes to events of a certain name type. If not all events of
a certain name tag shall be processed a further filtering needs to be implemented processing the
further arguments of the event. The function argument contains a reference to the implementa-
tion using the event to perform certain actions. The argument list of the event is handed over
to this function in its order but need to be declared in the function call statement.

this.controller.on(mymodule.testevent, function (name,eventarray))

The same way objects can unbind from events:

this.controller.off(mymodule.testevent, function (name,eventarray));

4.3. MODULE-SYNTAX 51

4.3 Module-Syntax

Each module is located in a sub directory of the module-subfolder defined in the config.json file.
The name of the sub folder equals to the module name (not the instance of the module name!)
and has at least two files:

4.3.1 Module.json

This file contains the module meta-definition used by the AutomationController. It must be a
valid JSON object with the following fields (all of them are required):

• autoload Boolean, defines will this module automatically instantiated during Home Au-
tomation startup.

• singleton Boolean, defines this module can be instantiated more than one time or not.

• defaults Object, default module instance settings. This object will be patched with the
particular config object from the controller’s configuration and resulting object will be
passed to the initializer.

• actions Object, defines exported module instance actions. Object keys are the names of
actions and values are meta-definitions of exported actions used by AutomationController
and API webserver.

• metrics Object, defines exported module metrics.

All configuration fields are required. Types of the object must be equal in every definition in
every case. For instance, if module doesn’t export any metric corresponding key value should be
and empty object .

4.3.2 index.js

This script defines an automation module class which is descendant of AutomationModule base
class. During initialization the module script must define the variable ’ module’ containing the
particular module class.

Example of a minimal automation module:

Listing 4.1: Minimal Module

1

2 f unc t i on SampleModule (id , c o n t r o l l e r) {
3 SampleModule . super . c a l l . i n i t (th i s , id , c o n t r o l l e r) ;
4

5 t h i s . g r e e t i n g = ” Hel lo , World ! ” ;
6 }
7

8 i n h e r i t s (SampleModule , AutomationModule) ;
9 module = SampleModule ;

10

11 SampleModule . prototype . i n i t = func t i on () {
12 t h i s . sayHe l lo () ;
13 }
14

52 CHAPTER 4. THE AUTOMATION SUBSYSTEM

15 SampleModule . prototype . sayHe l lo = func t i on () {
16 debugPrint (t h i s . g r e e t i n g) ;
17 }
18

19 SampleModule . prototype . stop = func t i on () {
20 t h i s . sayByeBye () ;
21 }

The first part of the code illustrates how to define a class function named SampleModule that
calls the superclass’ constructor. Its highly recommended not to do further instantiations in the
constructur. Initializations should be implemented within the ’init’ function.

The second part of the code is almost immutable for any module. It calls prototypal inheri-
tance support routine and it fills in module variable.

The third part of the sample code defines module’s init() method which is an instance ini-
tializer. This initializer must call the superclass’s initializer prior to all other tasks. In the
initializer module can setup it’s private environment, subscribe to the events and do any other
stuff. Sometimes, whole module code can be placed withing the initializer without creation of
any other class’s methods. As the reference of such approach you can examine AutoOff module
source code.

After the init function a module may contain other functions. The ’sayHello’ function of the
Sample Module shows this as example.

4.4 Available Core Modules

The automation engine already contains certain modules essential for the work of the whole
system. Do now exclude these modules from the config.json and alter them only if you know
exactly what you do.

4.4.1 Cron, the timer module

All time driven actions need a timer. The Z-Way automation engine implement a cron-type
timer system as a module as well. The basic function of the cron module is

• It accepts registration of events that are triggered periodically

• It allows to de-register such events.

The registration and deregistration of events is also handled using the event mechanism. The
cron module is listening for events with the tags ’cron.addTask’ and ’cron.removeTask’. The
first argument of these events are the name of the event fired by the cron module. The second
argument of the ’addTask’ event is an array desricing the times when this event shall be issued.
It has the format:

• Minute [start,stop, step] or 0-59 or null

• Hour [start,stop, step] or 0-23 or null

• weekDay [start,stop, step] or 0-6 or null

• dayOfMonth [start,stop, step] or 1-31 or null

• Month [start,stop, step] or 1-12 or null

4.4. AVAILABLE CORE MODULES 53

The argument for the different time parameters has one of three formats

• null: the event will be fired on every minute or hour etc.

• single value: the event will be fired when the value reaches the given value

• array [start, stop, step]: The event will be fired between start and stop in steps.

The object

{minute : null, hour : null, weekDay : null, day : null,month : null}

will fire every minute within every hour within every weekday on every day of the month
every month. Another example of an event emitted towards the cron module for registering an
timer event can be found in the Battery Polling Module:

Listing 4.2: Registering a Battery Polling Command

1 t h i s . c o n t r o l l e r . emit (” cron . addTask” , ” b a t t e r y P o l l i n g . p o l l ” , {
2 minute : 0 ,
3 hour : 0 ,
4 weekDay : t h i s . c o n f i g . launchWeekDay ,
5 day : nu l l ,
6 month : n u l l
7 }) ;

This call will cause the cron module to emit an event at night (00:00) on a day that is defined
in the configuration variable this.config.launchWeekDay, e.g. 0 = Sunday.

The ’cron.removeTask’ only needs the name of the registered event to deregister.

4.4.2 The Virtual Device Module

This module generates virtual devices and manages them. For more information about virtual
devices and the use in a Graphical User Interface please refer to chapter 5 and 5.

4.4.3 DeviceCollection module

The Device Collection Module manages devices and shall not be changed.

54 CHAPTER 4. THE AUTOMATION SUBSYSTEM

Chapter 5

Virtual Device API (vDev)

The functions of the ’Z-Way HA’ User Interface are described in the chapter 5. It is based on
so called virtual devices plus some other supporting functions like rooms, notifications, tagging
etc. The interface providing all these functions is called Virtual Device API (vDev).

The intention of this vDev API is to further simplify the use of Z-Way by AJAX based User
interface implementations and to unify the user experience across different wireless technologies.

The vDev API has the following objectives and functions.

• Provide a list of devices that are independent of the physical devices of a given wireless
network With this devices of different networks appear similarly.

• Show all functions of a physical device as one virtual device each. This simplifies the use
of the data and functions provides. The Z-Wave Device API still required a lot of domain
knowledge about the different devices, their instances, command classes, scales. In the
vDev API every function is represented by one virtual device only allowing simple loops
for display.

• Provide end user related context information. This allows e.g. to define profiles, rooms,
application etc.

• Handle events in an user friendly way to that they can be used a notifications on a UI.

There is an online manual for syntax of the various functions that can be accessed on

http://docs.zwayhomeautomation.apiary.io/

5.1 The virtual device

The virtual device in the vDev API is an object that had properties and offers functions. Both
properties, variables and functions are unified and their syntax is independent of the physical
nature of the device they are are referred to (If there is any).

5.1.1 Types and Ids

Every Virtual device is identified by a simple string type id. For all virtual devices that are
related to physical Z-Wave devices the device name is auto-generated by the ZWaveGate module
following this logic:

55

56 CHAPTER 5. VIRTUAL DEVICE API (VDEV)

5.1.2 Virtual Device Ids

Auto-generated devices are named after their IDs in the physical network. For Z-Wave devices
the naming is generated using the following logic.

ZWayVDev [Node ID]:[Instance ID]:[Command Class ID]:[Scale ID] The Node Id is
the node id of the physical device, the Instance ID is the instance id of the device or ’0’ if there is
only one instance. The command class ID refers to the command class the function is embedded
in. The scale id is usually ’0’ unless the virtual device is generated from a Z-Wave device that
supports multiple sensors with different scales in one single command class.

5.1.3 Virtual Device Type

Virtual devices can have a certain types. The type of the device can be chosen. For a list of the
device types current supported in the Z-Way-HA API please refer to chapter 5.

5.1.4 Access to Virtual Devices

Virtual devices can be access both on the server side using JS modules and on the client side
using the JSON API. On the client they are encoded into a URL style for easier handling in
AJAX code. A typical client side command in the vDev API looks like

http://YOURIP:8083/ZAutomation/api/v1/devices/ZWayVDev 6:0:37/command/off
’api’ points to the vDev API function, ’v1’ is just a constant to allow future extensions. The
devices are referred by a name that is automatically generated from the Z-Wave Device API.
The vDev also unifies the commands ’command’ and the parameters, here ’off’.

On the server side the very same command would be encoded in a JavaScript style.

Listing 5.1: Access vDevs

1

2 vdevId = vdev . id ;
3

4 vDev = t h i s . c o n t r o l l e r . d e v i c e s . get (vdevId) ;
5

6 vDevList = t h i s . c o n t r o l l e r . d e v i c e s . f i l t e r (func t i on (x) {
7 return x . get (” deviceType ”) === ” switchBinary ” ; }) ;
8

9 vDevTypes = t h i s . c o n t r o l l e r . d e v i c e s . map(func t i on (x) {
10 return x . get (” deviceType ”) ; }) ;

5.1.5 Virtual Device Usage / Commands

In case the virtual device is an actor it will accept and execute a command using the syntax:

Vdev.performCommand(name of the command) The name of the accepted command
should depend on the device type and can again be defined free of restrictions when implementing
the virtual device. For auto-generated devices derived from Z-Wave the following commands are
typically implemented.

5.1. THE VIRTUAL DEVICE 57

1. ’update’: updates a sensor value

2. ’on’: turns a device on. Only valid for binary commands

3. ’off’: turns a device off. Only valid for binary commands

4. ’exact’: sets the device to an exact value. This will be a temperature for thermostats or a
percentage value of motor controls or dimmers

5.1.6 Virtual Device Usage / Values

Virtual devices have inner values. They are called metrics. A metric can be set and get. Each
virtual device can define its own metrics. Metrics can be level, title icon and other device specific
values like scale (

1 vDev . s e t (” metr i c s : . . . ” , . . .) ;
2 vDev . get (” met r i c s : . . . ”) ;

5.1.7 How to create your own virtual devices

Virtual devices can be created using modules or Javascript code in the browser itself. The
following code sample demonstrate how to create and delete a virtual device.

Register device

Listing 5.2: Register Device

19 vDev = t h i s . c o n t r o l l e r . d e v i c e s . c r e a t e (vDevId , {
20 deviceType : ” deviceType ” ,
21 metr i c s : {
22 l e v e l : ” l e v e l ” ,
23 i con : ” i con from l i b or u r l ”
24 t i t l e : ” Defau l t t i t l e ”
25 }
26 } , f unc t i on (command , . . .) {
27 // hand les a c t i on s wi th the widge t
28 }) ;

Unregister device

Devices can be deleted or unregistered using the following command:

this.controller.devices.remove(vDevId)

Binding to metric changes

The metric - the inner variables of the vDev a changed by the system automatically. In order to
perform certain functions on these changes the function needs to be bound to the change to the
vdev. The syntax for this is

vDev.on(’change:metrics:...”, function (vDev) ...); Unbinding then works as one can
expect:

58 CHAPTER 5. VIRTUAL DEVICE API (VDEV)

vDev.off(change:metrics:..., function (vDev) ...)

5.2 Notifications and events

Notifications are a special kind of event to inform the user on the GUI. This means that normale
events are typically describes with numbers or ids while notifications contain a human readable
message. The creating of events and the reaction on events is describes in chapter 4

The UI can be notified on the certain events.

this.controller.addNotification(”....severity....”, ”....message....”, ”....origin....”); The
parameters define

• severity is error, info, debug;

• origin describes which part of the system it is about: core, module, device, battery.

The controller can act on notifications or disable them.

this.controller.on(’notifications.push’, this.handler);

this.controller.off(’notifications.push’, this.handler);

Chapter 6

Z-Way Data Model Reference

6.1 zway

• Description: zway is the Z-Way part of the object tree

• Syntax: zway.X with X as child object

• Child objects

– controller: controller object, see below for details

– devices: devices list, see below for details

– version: Z-Way.JS version

– isRunning(): Check if Z-Way is running

– isIdle(): Check if Z-Way is idle (no pending packets to send)

– discover(): Start Z-Way discovery process

– stop() : Stop Z-Way

– InspectQueue() : Returns list of pending jobs in the queue.

∗ item: [timeout, flags, nodeId, description, progress, payload]

∗ flags: [send count, wait wakeup, wait security, done, wait ACK, got ACK, wait
response, got response, wait callback, got callback]

– ProcessPendingCallbacks(): Process pending callbacks (result of setTimeout/setInter-
val or functions called via HTTP JSON API)

– bind(function, bitmask): Bind function to be called on change of devices list/instances
list/command classes list

– unbind(function) : Unbind function previously bind with bind()

– all function classes in 8 are also methods of this data object

6.2 controller

You can access the data elements of ”controller” in the demo user interface in menu ”for experts
+ Controller Info”

59

60 CHAPTER 6. Z-WAY DATA MODEL REFERENCE

• Description: Controller object

• Syntax: controller.X with X as child object

• Child objects

– data: Data tree of the controller

∗ APIVersion: Version of the Serial API

∗ SDK: System development kit version of the Transceiver firmware

∗ SISPresent: flase if SUIS is available

∗ SUCNodeId: Node ID of SUC if present

∗ ZWVersion: ZWave Version (firmware)

∗ ZWaveChip: The name of the Z-Wave transceiver chip

∗ ZWlibMajor / ZWlibMinor: library version

∗ capabilities: array of function class ids

∗ controllerstate: flag to show inclusion mode etc

∗ countJobs: shall job be counted

∗ curSerialAPIAckTimeout10ms: timing parameter of serial interface

∗ curSerialAPIBytetimeout10ms: timing parameter of serial interface

∗ homeId:the home id of the controller

∗ isinOtherNetworks: flag to show if controller is real primary if in other network

∗ isPrimary: flag to show if controller is primary

∗ isRealprimary: flag to show if controller can be primary

∗ isSUC: is SUC present

∗ lastExcludedDevice: node ID of last excluded device

∗ lastIncludedDevice: node ID of last included device

∗ libType library basis type

∗ manufacturerIS / manufacturerProductId / manufacturerProductTypeId: ids to
identify the transceiver hardware

∗ memoryGetAddress

∗ memoryGetData

∗ nodeId: own node ID

∗ nonManagementJobs: number of non man. jobs

∗ oldSerialAPIAckTimeout10ms: default timing parameter of serial interface

∗ oldSerialAPIBytetimeout10ms: default timing parameter of serial interface

∗ softwareRevisonDate: written by compiler

∗ softwareRevisionID: written by compiler

∗ vendor: string of hardware vendor

– AddNodeToNetwork(mode): Reference to zway.AddNodeToNetwork()

– RemoveNodeFromNetwork(mode): Reference to zway.RemoveNodeFromNetwork()

– ControllerChange(mode): Reference to zway.ControllerChange()

– GetSUCNodeId(mode): Reference to zway.GetSUCNodeId()

– SetSUCNodeId(nodeId): Assign SUC role to a device

– SetSISNodeId(nodeId): Assign SIS role to a device

– DisableSUCNodeId(nodeId): Revoke SUC/SIS role from a device

– SendNodeInformation(nodeId): Reference to zway.SendNodeInformation()

6.3. DEVICES 61

6.3 Devices

The devices object contains the array of the device objects. Each device in the network - including
the controller itself - has a device object in Z-Way.

• Description: list of devices

• Syntax: X with X as child object

• Child objects

m : Device object

– length: Length of the list

– SaveData(): Save Z-Way Z-Wave data for hot start on next run (in config/zddx/HOMEID-
DevicesData.xml)

6.4 Device

The data object can be accesses in the demo UI in advanced mode of ”Configuration”

• Description: the device object

• Syntax: device[n].X with X as child object

• Child objects

– id: (node) Id of the device

– Data: Data tree of the device

∗ SDK: SDK used in the device

∗ ZDDXMLFile: file of the Devcie Description Record

∗ ZWLib: Z-Wave library used

∗ ZWProtocolMajor / ZWProtocolMinor: Z-Wave protocol version

∗ applicationMajor / ApplicationMinor: Application Version of devices firmware

∗ basicType: basic Z-Wave device class

∗ beam: wake up beam required

∗ countFailed: statistics of failed packets sent (from start of process)

∗ countSuccess: statistics of sucessful packets sent (from start of process)

∗ deviceTypeString:

∗ genericType: generic Z-Wave device class

∗ infoProtocolSpecific

∗ isAwake

∗ isListening

∗ isFailed

∗ isRouting

∗ isVirtual:

∗ keeAwake: flag is device need to be kept awake

∗ lastRecevied: timestamp of last packet received

62 CHAPTER 6. Z-WAY DATA MODEL REFERENCE

∗ lastSend: timestamp of last sent operation

∗ ManufacturerId / manufacturerProductID / manufacturerProductTypeId: ids
used to identify the device

∗ neightbours: list of neighbour nodes

∗ nodeInfoFrame: nodeinformation frame in bytes

∗ option: flag if optional command classes are present

∗ queueLength: length of device specific send queue

∗ sensor1000: flag if device is FLIRS with 1000 ms wakeup

∗ sensor250: flag if device is FLIRS with 250 ms wakeup

∗ specificType: specific Z-Wave device class

– instances: Instances list of the device

– RequestNodeInformation(): Request NIF

– RequestNodeNeighbourUpdate(): Request routes update

– InterviewForce(): Purge all command classes and start interview based on device’s
NIF

– RemoveFailedNode(): Remove this node as failed. Device should be marked as failed
to remove it with this function.

– SendNoOperation(): Ping the device with empty packet

– LoadXMLFile(file): Load new Z-Wave Device Description XML file. See http://pepper1.net/zwavedb/

– GuestXML(): Return the list of all known Z-Wave Device Description XML files with
match score. [score, file name, brand name, product name, photo]

– WakeupQueue(): Pretend the device is awake and try to send packets

6.5 Instances

Each device may have multiple instances (similar functions like switches, same type sensors, ...)
If only one instance is present the id of this instance is 0. Command classes are located in
instances only-

• Description: list of instances

• Syntax: device[n].instance[m].X with X as child object

• Child objects

m : instance object

– length: Length of the list

– commandClasses: list of command classes of this instance. In case there is only one
instance, this is equivalent to the list of command classes of the device. For details
see below.

– Data: data object of instance

∗ dynamic: flag if instance is dynamic

∗ genericType: generic Z-Wave device class of instance

∗ specificType: specific Z-Wave device class of instance

6.6. DATA 63

6.5.1 CommandClass

This is the command class object. It contains public methods and public data elements that are
described in chapter 7

• Description: Command Class Implementation

• Syntax: device[n].instance[m].commandclass[id].X with X as child object

• Child objects

– id: Id of the Command Class of the instance of the device

– data: Data tree of the Command Class

∗ interviewCounter: number of attempts left until interview is terminate even if not
successful

∗ interviewDone: flag if interview of the command class is finished

∗ security: flag if command class is operated under special security mode

∗ version: version of the command class implemented

∗ supported: flag if CC is supported or only controlled

∗ commandclass data: Command Class specific data - see chapter 7 for details.

– name: Command Class name

– Method: Command Class method - see chapter 7 for details.

6.6 Data

This is the description of the data object.
General note: Z-Way objects and it’s decendents are NOT simple JS objects, but native JS

objects, that does not allow object modification.

• name: Name of data tree element

• updated: Update time

• invalidated: Invalidate time

• valueOf(): Returns value of the object (can be omitted to get object value)

• invalidate(): Invalidate data value (mark is as not valid anymore)

• bind(function (type[, arg]) ..., [arg, [watchChildren=false]]): Bind function to a change of
data tree element of its descendants

• unbind(function): Unbind function bind previously with bind()

64 CHAPTER 6. Z-WAY DATA MODEL REFERENCE

Chapter 7

Command Class Reference

Command Classes are groups of wireless commands that allow using certain functions of a Z-wave
device. In Z-Way each Z-Wave device has a data holder entry for each command class supported.
During the inclusion and interview of the device the command class structure is instantiated in
the data holder and filled with certain data. Command Class commands change values of the
corresponding data holder structure. The follow list shows the public commands of the command
classes supported with their parameters and the data holder objects changed.

The subsequent list shows the most important data holder values but the full set of data
values can always be accesses using the demo UI. In expert mode there is a list of command
classes with a simplified User Interface plus a link that visualizes all data holder elements.

7.1 FirmwareUpdate (0x7A/122)

Command Class values in data holder:

• ’updateStatus’: indicated the status of the update process

Perform

Syntax: FirmwareUpdatePerform(manufacturerId, firmwareId, firmwareTarget, size,
Data, successCallback = NULL, failureCallback = NULL)

Description: Starts a firmware Update process

Parameter manufacturerId: This must be the Manufacturer ID of the device as re-
ported in Version CC, can be copied from there

Parameter firmwareTarget: A device can have multiple firmwares, Id=0 points to the
Z-Wave firmware

Parameter length: the length of the data structure

Parameter data: the bin encoded firmware

Return: data holder ”type id” is updated with sub variables srcId,sensorState,sensorTime

65

66 CHAPTER 7. COMMAND CLASS REFERENCE

7.2 Alarm (0x71/113)

Hands binary alarm events from binary sensors by alarm type. The following alarm types are
defined:

• 0x01: Smoke

• 0x02: CO

• 0x03: CO2

• 0x04: Heat

• 0x05: Water

• 0x06: Access Control

• 0x07: Burglar

• 0x08: Power Management

• 0x09: System

• 0x0a: Emergency

• 0x0b: Clock

Syntax: AlarmGet(type, event, successCallback = NULL, failureCallback = NULL)

Description: Requests the status of a specific event of a specific alarm type

Parameter type: Alarm type

Parameter event: Event type

Syntax: AlarmSet(type, level, successCallback = NULL, failureCallback = NULL)

Description: Status the status of a specific alarm type

Parameter type: Alarm type

Parameter level: New status

7.3 Command Class Alarm Sensor (0x9c/156)

The Alarm Sensor Command Class can be used to realize Sensor Alarms.

Command Class values in data holder:

• ’type’: A field with the type id as index what holds the information about the alarm sensors

7.4. COMMAND CLASS ASSOCIATION (0X85/133) 67

Command Alarm Sensor Get

Syntax: Get(type = -1, successCallback = NULL, failureCallback = NULL)

Description: Requests the status of the alarm sensor of type ’type’

Parameter type: Alarm type to get. -1 means get all types

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder ”type id” is updated with sub variables srcId,sensorState,sensorTime

7.4 Command Class Association (0x85/133)

The association command class allows to manage the association groups and the nodeIDs in the
association groups.

Command Class values in data holder:

• groups: number of association groups

• group number: array of association groups with the child values: max (max number of
nodes allowed) and nodes as array of nodes in the association group

Command Association Get

Syntax: Get(groupId = 0, successCallback = NULL, failureCallback = NULL)

Description: Send Association Get

Parameter groupId: Group Id (from 1 to 255), 0 requests all groups

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder value ”nodes” in association group object is updated

Command Association Set

Syntax: Set(groupId, includeNode, successCallback = NULL, failureCallback = NULL)

Description: Send Association Set (Add)

Parameter groupId: Group Id (from 1 to 255)

Parameter includeNode: Node to be added to the group

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder value ”nodes” in association group object is updated

68 CHAPTER 7. COMMAND CLASS REFERENCE

Command Association Remove

Syntax: Remove(groupId, excludeNode, successCallback = NULL, failureCallback =
NULL)

Description: Send Association Remove

Parameter groupId: Group Id (from 1 to 255)

Parameter excludeNode: Node to be removed from the group

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder value ”nodes” in association group object is updated

7.5 Command Class Basic (0x20/32)

The Basic Command Class is the wild card command class. Almost all Z-Wave devices support
this command class but they interpret the command class commands in different ways. A
Thermostat will handle a Basic Set Command in a different way than a Dimmer but both
accept the Basic Set command and act.

Command Class values in data holder:

• level: generic switching level of the device controlled

Command Basic Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send Basic Get

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder ”level” is updated

Command Basic Set

Syntax: Set(value, successCallback = NULL, failureCallback = NULL)

Description: Send Basic Set

Parameter value: Value

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder ”level” is updated

7.6. COMMAND CLASS BATTERY (0X80/128) 69

7.6 Command Class Battery (0x80/128)

The battery command class allows monitoring the battery charging level of a device.

Command Class values in data holder:

• last: last battery charging level (0100

• history: an array of charging levels and UNIX time stamps, can be used to predict next
time to change battery

• lastChange: UNIX time stamp of last battery change (if recognized)

Command Battery Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send Battery Get

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder ”last” is updated, in case ”last” has changed, ”history” or
”lastChange” may be updates

7.7 CentralScene (0x5B/91)

Received Central Scene Commands. They are triggered by pushing a button on a controller
supporting the central Scene Commmand Class

Command Class values in data holder:

• ’keyAttribute’: 0x00 = Key pressed, 0x01 = Key released, 0x02 = Key held down

• ’currentScene’: indicates the current activated scene

7.8 ClimateControlSchedule (0x46/70)

The command class is obsolete but still partly implemented for legacy reasons. No values or
command class functions are exposed.

7.9 Command Class Clock (0x81/129)

The clock Command Class allows to sync the internal clock for timer dependent application such
as thermostats with schedules.

70 CHAPTER 7. COMMAND CLASS REFERENCE

Command Class Clock Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send Clock Get

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Command Class Clock Set

Syntax: Set(successCallback = NULL, failureCallback = NULL)

Description: Send Clock Set

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

7.10 Command Class Configuration(0x70/112)

The configuration command class is used to set certian configuration valeus that change the
behavior of the device. Z-Wave requires that every device works out of the box with out further
configuration. However different configuration value significantly enhance the value a device.

Configuration parameters are identified by a 8 bit parameter number and a value that can be
1, 2 or even 4 byte long. Z-Wave does not provide any information about the configuration values
by wireless commands. User have to look into the device manual to learn about configuration
parameters. The Device Description Record, incoprotated by Z-Way gives information about
valid parameters and the meaning of the values to be set.

Command Class values in data holder:

: Parameter value with child values size (1,2,4 byte) and value

Command Configuration Get

Syntax: Get(parameter, successCallback = NULL, failureCallback = NULL)

Description: Send Configuration Get

Parameter parameter: Parameter number (from 1 to 255)

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder with parameter number is updated or created when no available

7.11. COMMAND CLASS DOORLOCK (0X62/98) 71

Command Configuration Set

Syntax: Set(parameter, value, size = 0, successCallback = NULL, failureCallback =
NULL)

Description: Send Configuration Set

Parameter parameter: Parameter number (from 1 to 255)

Parameter value: Value to be sent (negative and positive values are accepted, but
will be stripped to size)

Parameter size: Size of the value (1, 2 or 4 bytes). Use 0 to guess from previously
reported value if any. 0 means use size previously obtained Get

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder with parameter number is updated

Command Configuration SetDefault

Syntax: SetDefault(parameter, successCallback = NULL, failureCallback = NULL)

Description: Send Configuration SetDefault

Parameter parameter: Parameter number to be set to device default

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

7.11 Command Class DoorLock (0x62/98)

The door lock command class allows to operate an electronic door lock
Command Class values in data holder:

• mode: general operating mode of lock

• insideMode: for inside handle

• outsideMode: for outside handle

• lockMinutes: setup value fo timeout

• lockSeconds: setup value fo timeout

• condition:

72 CHAPTER 7. COMMAND CLASS REFERENCE

• insideState: state of inside handle

• outsideState: state of outside handle

• timeoutMinutes: time to timeout mode

• timeoutSeconds: time to timeout mode

• opType”));

Command Class DoorLock Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send DoorLock Get

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Command Class DoorLock ConfigurationGet

Syntax: ConfigurationGet(successCallback = NULL, failureCallback = NULL)

Description: Send DoorLock Configuration Get

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Command Class DoorLock Set

Syntax: Set(mode, successCallback = NULL, failureCallback = NULL)

Description: Send DoorLock Configuration Set

Parameter mode: Lock mode

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

7.12. COMMAND CLASS DOOR LOCK LOGGING (0X4C/76) 73

Command Class DoorLock ConfigurationSet

Syntax: ConfigurationSet(opType, outsideState, insideState, lockMin, lockSec, suc-
cessCallback = NULL, failureCallback = NULL)

Description: Send DoorLock Configuration Set

Parameter opType: Operation type

Parameter outsideState: State of outside door handle

Parameter insideState: State of inside door handle

Parameter lockMin: Lock after a specified time (minutes part)

Parameter lockSec: Lock after a specified time (seconds part)

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

7.12 Command Class Door Lock Logging (0x4C/76)

The Door Lock Logging Command Class allows to receive reports about all successful and failed
activities of the electronic door lock

Command Class values in data holder:

• log record: The data holder contains the log history

Command Door Lock Log LoggingGet

Syntax: LoggingGet(records,successCallback = NULL, failureCallback = NULL)

Description: Calls the log entries from the lock

Parameter records: max number of records

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder is updated

7.13 Command Class Indicator (0x87/135)

The indicator command class operates the indicator on the physical device if available. This can
be used to identify a device or use the indicator for special purposes.

Command Class values in data holder:

• stat: The status of the indicator

74 CHAPTER 7. COMMAND CLASS REFERENCE

Command Indicator Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Calls the indicator status from the device

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder stat is updated

Command Class Indicator Set

Syntax: Set(stat, successCallback = NULL, failureCallback = NULL)

Description: Send Indicator Set

Parameter stat: indicator status value

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

7.14 Command Class Meter (0x32/50)

The meter command class allows to read different kind of meters. Z-Wave differentiates different
meter types and different meter scales. Please refer to the file /translations/scales.xml for details
about possible meter types and values.

Command Class values in data holder:

• resettable: flag to indicate of the meter can be reset

typeId : One meter device can have different meters. Each meter object has the following child
objects:

– delta: difference between last and actual meter value.

– previous: previous meter value (gotten with last GET request

– rateType: meter rate type

– scale: meter scale id

– scaleString: string representation of meter scale. Refer to /translations/scales.xml for
scale types.

– sensorType: meter type id. Refer to /translations/scales.xml for types

– sensorTypeString: string representation of sensor Type. Refer to /translations/s-
cales.xml for type strings

– val: The actual meter value

7.15. METERTABLEMONITOR (0X3D/61) 75

Command Meter Get

Syntax: Get(scale = -1, successCallback = NULL, failureCallback = NULL)

Description: Send Meter Get

Parameter scale: Desired scale. -1 for all scales

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder values of meter id are updated

Command Meter Reset

Syntax: Reset(successCallback = NULL, failureCallback = NULL)

Description: Send Meter Reset

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

7.15 MeterTableMonitor (0x3D/61)

The Meter Table Monitor Command Class defines the Commands necessary to read historical
and accumulated values in physical units from a water meter or other metering device (gas,
electric etc.) and thereby enabling automatic meter reading capabilities

MeterTableMonitorGetAdminId

Syntax: MeterTableMonitorGetAdminId(successCallback = NULL, failureCallback
= NULL)

Description: The Meter Table Point Adm. Number Get Command is used to request
the Meter Point Administration Number to identify customer.

MeterTableMonitorGetId

Syntax: MeterTableMonitorGetId(successCallback = NULL, failureCallback = NULL)

Description: The Meter Table ID Get Command is used to request the parameters
used for identification of customer and metering device.

76 CHAPTER 7. COMMAND CLASS REFERENCE

MeterTableMonitorStatusDepthGet

Syntax: MeterTableMonitorStatusDepthGet(depth, successCallback = NULL, fail-
ureCallback = NULL)

Description: The Meter Table Status Date Get Command is used to request a number
of status events recorded in a certain time interval. If the meter does not support a
status event log history it must return the current state of the meter

MeterTableMonitorCurrentDataGet

Syntax: MeterTableMonitorStatusDateGet(maxResults, startDate, endDate, , suc-
cessCallback = NULL, failureCallback = NULL)

Description: The Meter Table Current Data Get Command is used to request a
number of time stamped values (current) in physical units according to the dataset
mask.

MeterTableMonitorCurrentDataGet

Syntax: MeterTableMonitorCurrentDataGet(setId, successCallback = NULL, fail-
ureCallback = NULL)

Description:

MeterTableMonitorHistoricalDataGet

Syntax: MeterTableMonitorHistoricalDataGet(setId, maxResults, startDate, end-
Date, successCallback = NULL, failureCallback = NULL)

Description: The Meter Table Historical Data Get Command is used to request a
number of time stamped values (historical) in physical units according to rate type,
dataset mask and time interval.

7.16 Command Class Multichannel Association (0x8e/142)

This is an enhancement to the Association Command Class. The command class follows the
same logic as the Association command class and has the same commands but accepts different
instance values.

Command MultiChannelAssociation Get

Syntax: Get(groupId = 0, successCallback = NULL, failureCallback = NULL)

Description: Send MultiChannelAssociation Get

Parameter groupId: Group Id (from 1 to 255), 0 requests all groups

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

7.17. COMMAND CLASS NODENAMING (0X77/119) 77

Command MultiChannelAssociation Set

Syntax: Set(groupId, includeNode, includeInstance, successCallback = NULL, fail-
ureCallback = NULL)

Description: Send MultiChannelAssociation Set (Add)

Parameter groupId: Group Id (from 1 to 255)

Parameter includeNode: Node to be added to the group

Parameter includeInstance: Instance of the node to be added to the group

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Command MultiChannelAssociation Remove

Syntax: Remove(groupId, excludeNode, excludeInstance, successCallback = NULL,
failureCallback = NULL)

Description: Send MultiChannelAssociation Remove

Parameter groupId: Group Id (from 1 to 255)

Parameter excludeNode: Node to be removed from the group

Parameter excludeInstance: Instance of the node to be removed from the group

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

7.17 Command Class NodeNaming (0x77/119)

The Node naming command class allows assigning a readable string for a name and a location
to a physical device. The two strings are stored inside the device and can be called on request.
There are no restrictions to the name except the maximum length of the string of 16 characters.

Command Class values in data holder:

• nodename: The name of the device

• location: the location of the device

• myname: The name of the Z-Way instance

• mylocation: the location of the Z-Way instance

78 CHAPTER 7. COMMAND CLASS REFERENCE

Command NodeNaming Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send NodeNaming GetName and GetLocation

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder ”nodename” and ”location” are updated

Command NodeNaming GetName

Syntax: GetName(successCallback = NULL, failureCallback = NULL)

Description: Send NodeNaming GetName

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder ”nodename” is updated

Command NodeNaming GetLocation

Syntax: GetLocation(successCallback = NULL, failureCallback = NULL)

Description: Send NodeNaming GetLocation

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder ”location” is updated

Command NodeNaming SetName

Syntax: SetName(name, successCallback = NULL, failureCallback = NULL)

Description: Send NodeNaming SetName

Parameter name: Value

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder ”nodename” is updated

7.18. POWERLEVEL (0X73/115) 79

Command NodeNaming SetLocation

Syntax: SetLocation(location, successCallback = NULL, failureCallback = NULL)

Description: Send NodeNaming SetLocation

Parameter location: Value

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder ”location” is updated

7.18 PowerLevel (0x73/115)

This Command Class ist used to test the link budget to a given other device identified by its
node ID. The command class will vary the transmit level and send a number of test frames and
counts those successfully transmitted.

Command Class values in data holder:

• ’status’: status of power test

• ’acknowledgedFrames’: ’good’ frames

• ’totalFrames’: total frames sent

PowerLevelGet

Syntax: PowerLevelGet(successCallback = NULL, failureCallback = NULL)

Description: returns the actual (TX) power level of te node

PowerLevelSet

Syntax: PowerLevelSet(level,timeout, successCallback = NULL, failureCallback =
NULL)

Description: The Powerlevel Set Command used to set the power level indicator
value, which SHOULD be used by the node when transmitting RF, and the timeout
for this power level indicator value before returning the power level defined by the
application.

Parameter level: power level

Parameter timeout: timeout in sec

80 CHAPTER 7. COMMAND CLASS REFERENCE

PowerLevelTestNodeSet

Syntax: PowerLevelTestNodeSet(testNodeId, level, frameCount, successCallback =
NULL, failureCallback = NULL)

Description: instruct the testNode to send out ’framecount’ number of frames with
(TX) power level ’level’

Parameter testNodeId: Node ID if the link to be tested

Parameter level: power level used

Parameter framecount: number of frames used for testing

PowerLevelTestNodeGet

Syntax: PowerLevelTestNodeGet(successCallback = NULL, failureCallback = NULL)

Description: requests the result of the latest powerlevel test started with PowerLevel-
TestNodeSet

7.19 Command Class Protection (0x75/117)

This command class is used to disable local control of the device.

Command Class Protection Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send Protection Get

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Command Class Protection Set

Syntax: Set(state, rfState = 0, successCallback = NULL, failureCallback = NULL)

Description: Send Protection Set

Parameter state: Local control protection state

Parameter rfState: RF control protection state

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

7.19. COMMAND CLASS PROTECTION (0X75/117) 81

Command Class Protection ExclusiveGet

Syntax: ExclusiveGet(successCallback = NULL, failureCallback = NULL)

Description: Send Protection Exclusive Control Get

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Command Class Protection ExclusiveSet

Syntax: ExclusiveSet(controlNodeId, successCallback = NULL, failureCallback =
NULL)

Description: Send Protection Exclusive Control Set

Parameter controlNodeId: Node Id to have exclusive control over destination node

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Command Class Protection TimeoutGet

Syntax: TimeoutGet(successCallback = NULL, failureCallback = NULL)

Description: Send Protection Timeout Get

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Command Class Protection TimeoutSet

Syntax: TimeoutSet(timeout, successCallback = NULL, failureCallback = NULL)

Description: Send Protection Timeout Set

Parameter timeout: Timeout in seconds. 0 is no timer set. -1 is infinite timeout.
max value is 191 minute (11460 seconds). values above 1 minute are ...

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

82 CHAPTER 7. COMMAND CLASS REFERENCE

7.20 Command Class SceneActivation(0x2B/43)

Command Class SceneActivation Set

Syntax: Set(sceneId, dimmingDuration = 0xff, successCallback = NULL, failureCall-
back = NULL)

Description: Send SceneActivation Set

Parameter sceneId: Scene Id

Parameter dimmingDuration: Dimming duration

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

7.21 Command Class SceneControllerConf (0x2d/45)

Command Class SceneControllerConf

Syntax: Get(group = 0, successCallback = NULL, failureCallback = NULL)

Description: Send SceneControllerConf Get

Parameter group: Group Id

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Command Class SceneControllerConf Set

Syntax: Set(group, scene, duration = 0x0, successCallback = NULL, failureCallback
= NULL)

Description: Send SceneControllerConf Set

Parameter group: Group Id

Parameter scene: Scene Id

Parameter duration: Duration

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

7.22. COMMAND CLASS SCENEACTUATORCONF (0X2C/44) 83

7.22 Command Class SceneActuatorConf (0x2C/44)

Command Class values in data holder:

• currentScene: the actual scene

Command Class SceneActuatorConf Get

Syntax: Get(scene = 0, successCallback = NULL, failureCallback = NULL)

Description: Send SceneActuatorConf Get

Parameter scene: Scene Id

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Command Class SceneActuatorConf Set

Syntax: Set(scene, level, dimming = 0xff, override = TRUE, successCallback =
NULL, failureCallback = NULL)

Description: Send SceneActuatorConf Set

Parameter scene: Scene Id

Parameter level: Level

Parameter dimming: Dimming

Parameter override: If false then the current settings in the device is associated with
the Scene Id. If true then the Level value is used

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

7.23 Schedule (0x53/83)

The Schedule Command Class allows devices to exchange schedules which specify when to set a
new behaviour. The Schedule Command Class is a generic scheduling command class that can
be used to make schedules for any device type.

ScheduleGet Tequest the current schedule in a device for a specific schedule ID

Syntax: ScheduleGet(slotId, successCallback = NULL, failureCallback = NULL)

Parameter slotId: the storage slot of the schedule

84 CHAPTER 7. COMMAND CLASS REFERENCE

7.24 Command Class ScheduleEntryLock (0x4e/78)

Controls access to a door lock based on times and intervals

Command Class ScheduleEntryLock Enable

Syntax: Enable(user, enable, successCallback = NULL, failureCallback = NULL)

Description: Send ScheduleEntryLock Enable(All)

Parameter user: User to enable/disable schedule for. 0 to enable/disable for all users

Parameter enable: TRUE to enable schedule, FALSE otherwise

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Command Class ScheduleEntryLock WeekdayGet

Syntax: WeekdayGet(user, slot, successCallback = NULL, failureCallback = NULL)

Description: Send ScheduleEntryLock Weekday Get

Parameter user: User to get schedule for. 0 to get for all users

Parameter slot: Slot to get schedule for. 0 to get for all slots

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Command Class ScheduleEntryLock WeekdaySet

Syntax: WeekdaySet(user, slot, dayOfWeek, startHour, startMinute, stopHour, stop-
Minute, successCallback = NULL, failureCallback = NULL)

Description: Send ScheduleEntryLock Weekday Set

Parameter user: User to set schedule for

Parameter slot: Slot to set schedule for

Parameter dayOfWeek: Weekday number (0..6). 0 = Sunday. . 6 = Saturday

Parameter startHour: Hour when schedule starts (0..23)

Parameter startMinute: Minute when schedule starts (0..59)

Parameter stopHour: Hour when schedule stops (0..23)

Parameter stopMinute: Minute when schedule stops (0..59)

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

7.24. COMMAND CLASS SCHEDULEENTRYLOCK (0X4E/78) 85

Command Class ScheduleEntryLock YearGet

Syntax: YearGet(user, slot, successCallback = NULL, failureCallback = NULL)

Description: Send ScheduleEntryLock Year Get

Parameter user: User to enable/disable schedule for. 0 to get for all users

Parameter slot: Slot to get schedule for. 0 to get for all slots

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Command Class ScheduleEntryLock YearSet

Syntax: YearSet(user, slot, startYear, startMonth, startDay, startHour, startMinute,
stopYear, stopMonth, stopDay, stopHour, stopMinute, successCallba

Description: Send ScheduleEntryLock Year Set

Parameter user: User to set schedule for

Parameter slot: Slot to set schedule for

Parameter startYear: Year in current century when schedule starts (0..99)

Parameter startMonth: Month when schedule starts (1..12)

Parameter startDay: Day when schedule starts (1..31)

Parameter startHour: Hour when schedule starts (0..23)

Parameter startMinute: Minute when schedule starts (0..59)

Parameter stopYear: Year in current century when schedule stops (0..99)

Parameter stopMonth: Month when schedule stops (1..12)

Parameter stopDay: Day when schedule stops (1..31)

Parameter stopHour: Hour when schedule stops (0..23)

Parameter stopMinute: Minute when schedule stops (0..59)

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

86 CHAPTER 7. COMMAND CLASS REFERENCE

7.25 Command Class SensorBinary (0x30/48)

Command Class values in data holder:

• level: level of the binary sensor

Command SensorBinary Get

Syntax: Get(sensorType = 0, successCallback = NULL, failureCallback = NULL)

Description: Send SensorBinary Get

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter sensorType: Type of sensor to query information for. 0xFF to query
information for the first available sensor type

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder value ”level” is updated

7.26 Command Class Sensor Configuration (0x9e/158)

Allows to set a certain trigger level for a sensor to trigger

Command Class SensorConfiguration Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send SensorConfiguration Get

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Command Class SensorConfiguration Set

Syntax: Set(mode, value, successCallback = NULL, failureCallback = NULL)

Description: Send SensorConfiguration Set

Parameter mode: Value set mode

Parameter value: Value

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

7.27. COMMAND CLASS SENSOR MULTILEVEL (0X31/49) 87

7.27 Command Class Sensor Multilevel (0x31/49)

The sensor multilevel command class allows to read different kind of sensor. Z-Wave differentiates
different sensor types and different scales of this sensor. Please refer to the file /translations/s-
cales.xml for details about possible sensor types and values.

Command Class values in data holder:

typeId : One sensor device can have different sensor. Each sensor object has the following child
objects:

– scale: sensor scale id

– scaleString: string representation of sensor scale. Refer to /translations/scales.xml
for scale types.

– sensorType: sensor type id. Refer to /translations/scales.xml for types

– sensorTypeString: string representation of sensor Type. Refer to /translations/s-
cales.xml for type strings

– val: The actual sensor value

Command SensorMultilevel Get

Syntax: Get(sensorType = -1, successCallback = NULL, failureCallback = NULL)

Description: Send SensorMultilevel Get

Parameter sensorType: Type of sensor to be requested. -1 means all sensor types
supported by the device

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder values of sensorIds are updated

7.28 Command Class Switch All (0x27/39)

This command class controls the behavior of a actuator on Switch all commands. It can accept,
both on and off, only on, only off or nothing.

Command Class values in data holder:

• mode: the current acceptance mode

Command SwitchAll Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send SwitchAll Get

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder for ”mode” is updated

88 CHAPTER 7. COMMAND CLASS REFERENCE

Command SwitchAll Set

Syntax: Set(mode, successCallback = NULL, failureCallback = NULL)

Description: Send SwitchAll Set

Parameter mode: SwitchAll Mode: see definitions below

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder for ”mode” is updated

Command SwitchAll SetOn

Syntax: SetOn(successCallback = NULL, failureCallback = NULL)

Description: Send SwitchAll Set On

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Command SwitchAll SetOff

Syntax: SetOff(successCallback = NULL, failureCallback = NULL)

Description: Send SwitchAll Set Off

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

7.29 Command Class SwitchColor (0x33/51)

Allows to define color for multicolor LED lights. It based on capabilities:

• 0: Warm White (0x00 0xFF: 0 100%)

• 1: Cold White (0x00: - 0xFF: 0 100%)

• 2: Red (0x00 0xFF: 0 100%)

• 3: Green (0x00 0xFF: 0 100%)

• 4: Blue (0x00 0xFF: 0 100%)

7.29. COMMAND CLASS SWITCHCOLOR (0X33/51) 89

• 5: Amber (for 6ch Color mixing) (0x00 0xFF: 0 100%)

• 6: Cyan (for 6ch Color mixing) (0x00 0xFF: 0 100%)

• 7: Purple (for 6ch Color mixing) (0x00 0xFF: 0 100%)

• 8: Indexed Color (0x00 0x0FF: Color Index 0-255)

Command Class values in data holder:

capability Id : A data holder for available capability. it contains the status level

Command SwitchColor Get

Syntax: Get(capabilityId, successCallback=NULL, failureCallback=NULL)

Description: Requests a status of the a certain capability

Parameter capability: the id of the capability

Return: data holder ’capability Id’ is updated with status

Command SwitchColor Set

Syntax: Set(capabilityId, value, duration=0xff, successCallback=NULL, failureCall-
back=NULL)

Description: sets the status of a capability

Parameter capability: the id of the capability

Parameter value: new desired value of this capability

Parameter duration: time to change capability state

Duration argument is only valid for SwitchColor CC version 2 (it is ignored for version 1). It
may have the following values:

0 : Change value instantly

1-127 : Duration between 1 and 127 seconds

128-254 : Duration between 1 and 127 minutes

255 : Factory default (device-specific)

Command SwitchColor SetMultiple

Syntax: SetMultiple(count, [capabilityIds], [states], duration=0xff, successCallback=NULL,
failureCallback=NULL)

Description: sets the status of a multiple capabilities

Parameter count: number of array members

Parameter capabilities: array of ids of the capability

Parameter state: array of new desired states of this capabilities

Parameter duration: time to change capability state

90 CHAPTER 7. COMMAND CLASS REFERENCE

Command SwitchColor StartLevelChange

Syntax: StartLevelChange(capabilityId, dir, successCallback=NULL, failureCallback=NULL)

Description: Start the change of a capability status

Parameter capability: the id of the capability

Others Parameters: see SwitchMultilevel Parameters

Command SwitchColor StopStateChange

Syntax: StopStateChange(capabilityId, ZJobCustomCallback successCallback, suc-
cessCallback=NULL, failureCallback=NULL)

Description: stop change of capability status

Parameter capability: the id of the capability

Return: data holder ’capability Id’ is updated with status

7.30 Command Class SwitchBinary(0x25/37)

The Switch Binary Command Class is used to control all actuators with simple binary (on/off)
switching functions, primarily electrical switches.

Command Class values in data holder:

• Level: the level of the remotely controlled device

• mylevel: the level of the switch multilevel emulation of Z-Way

Command SwitchBinary Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send SwitchBinary Get

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder ”level” is updated

Command SwitchBinary Set

Syntax: Set(value, successCallback = NULL, failureCallback = NULL)

Description: Send SwitchBinary Set

Parameter value: Value

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder ”level” is updated

7.31. COMMAND CLASS SWITCHMULTILEVEL (0X26/38) 91

7.31 Command Class SwitchMultilevel (0x26/38)

The Switch Multilevel Command Class is used to control all actuators with multilevel switching
functions, primarily Dimmers and Motor Controlling devices.

Command Class values in data holder:

• Level: the level of the remotely controlled device

• mylevel: the level of the switch multilevel emulation of Z-Way

Command SwitchMultilevel Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send SwitchMultilevel Get

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder ”level” is updated

Command SwitchMultilevel Set

Syntax: Set(level, duration = 0xff, successCallback = NULL, failureCallback =
NULL)

Description: Send SwitchMultilevel Set

Parameter level: Level to be set

Parameter duration: Duration of change:. 0 instantly. 1-127 in seconds. 128-254 in
minutes mapped to 1-127 (value 128 is 1 minute). 255 use device factory default

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder ”level” is updated

Command Class SwitchMultilevel StartLevelChange

Syntax: StartLevelChange(dir, duration = 0xff, ignoreStartLevel = TRUE, startLevel
= 50, indec = 0, step = 0xff, successCallback = NULL, failureCallback = NULL)

Description: Send SwitchMultilevel StartLevelChange

Parameter dir: Direction of change: 0 to incrase, 1 to decrase

92 CHAPTER 7. COMMAND CLASS REFERENCE

Parameter duration: Duration of change:. 0 instantly. 0x01-0x7f in seconds. 0x80-
0xfe in minutes mapped to 1-127 (value 0x80=128 is 1 minute). 0xff us

Parameter ignoreStartLevel: If set to True, device will ignore start level value and
will use it’s curent value

Parameter startLevel: Start level to change from

Parameter indec: Increment/decrement type for step

Parameter step: Step to be used in level change in percentage. 0-99 mapped to
1-100%. 0xff uses device factory default

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder ”level” is updated

Command SwitchMultilevel StopLevelChange

Syntax: StopLevelChange(successCallback = NULL, failureCallback = NULL)

Description: Send SwitchMultilevel StopLevelChange

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder ”level” is updated

7.32 Command Class ThermostatFanMode(0x44/68)

Allows to control the Thermostat Fan
Command Class values in data holder:

• mode: fan mode

Command ThermostatFanMode Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send ThermostatFanMode Get

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder ”mode” is updated

7.33. COMMAND CLASS THERMOSTATFANSTATE(0X45/69) 93

Command ThermostatFanMode Set

Syntax: Set(mode, successCallback = NULL, failureCallback = NULL)

Description: Send ThermostatFanMode Set

Parameter mode: new fan mode

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder ”mode” is updated

7.33 Command Class ThermostatFanState(0x45/69)

Allows to control the Thermostat Fan
Command Class values in data holder:

• state: fan state

Command ThermostatFanState Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send ThermostatFanState Get

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder ”state” is updated

7.34 Command Class ThermostatMode (0x40/64)

This command class allows to switch a heating/cooling actuator in different modes. During
interview the mode mask is requested and the dat objects are create accordingly.

Command Class values in data holder:

• modemask: contains the modemask with bit to identify the different modes of the thermo-
stat

• mode: the actual mode

modeID : list of all allowed modes with string representation.

94 CHAPTER 7. COMMAND CLASS REFERENCE

Command ThermostatMode Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send ThermostatMode Get

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Command ThermostatMode Set

Syntax: Set(mode, successCallback = NULL, failureCallback = NULL)

Description: Send ThermostatMode Set

Parameter mode: Thermostat Mode

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

7.35 Command Class ThermostatOperatingState (0x42/66)

This command class allows to determine the operating state of the thermostat
Command Class values in data holder:

• state: operating state

Command ThermostatOperatingState LoggingGet

Syntax:LoggingGet(successCallback = NULL, failureCallback = NULL)

Description: Send ThermostatOperatingState LoggingGet

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

7.36 Command Class ThermostatSetPoint (0x43/67)

This command class allows to set a certain setpoint to a thermostat. The command class can be
applied to different kind of thermostats (heating, cooling, ...), hence it has various modes.

Command Class values in data holder:

7.36. COMMAND CLASS THERMOSTATSETPOINT (0X43/67) 95

• modemask: contains the modemask with bit to identify the different modes of the thermo-
stat

modeID : data object for each mode with the following child objects

– modeName: contains the modemask with bit to identify the different modes of the
thermostat

– precision: data object for each mode with the following child objects

– scale: scale id of the thermostat value

– scaleString: string representation of the scale id

– setVal

– size: size of setpoint value in bte

– val

Command ThermostatSetPoint Get

Syntax: Get(mode = -1, successCallback = NULL, failureCallback = NULL)

Description: Send ThermostatSetPoint Get

Parameter mode: Thermostat Mode, -1 requests for all modes

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder for ”mode” is updated

Command ThermostatSetPoint Set

Syntax: Set(mode, value, successCallback = NULL, failureCallback = NULL)

Description: Send ThermostatSetPoint Set

Parameter mode: Thermostat Mode

Parameter value: temperature

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder for ”mode” is updated

96 CHAPTER 7. COMMAND CLASS REFERENCE

7.37 Command Class UserCode (0x63/99)

Command Class UserCode Get

Syntax: Get(user = -1, successCallback = NULL, failureCallback = NULL)

Description: Send UserCode Get

Parameter user: User index to get code for (1 ... maxUsers). -1 to get codes for all
users

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Command Class UserCode Set

Syntax: Set(user, code, status = 0, successCallback = NULL, failureCallback =
NULL)

Description: Send UserCode Set

Parameter user: User index to set code for (1...maxUsers) 0 means set for all users

Parameter code: Code to set (4...10 characters long)

Parameter status: Code status to set

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

7.38 Command Class Time (0x8a/138)

Command Class Time TimeGet

Syntax: TimeGet(successCallback = NULL, failureCallback = NULL)

Description: Send Time TimeGet

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

7.39. COMMAND CLASS TIMEPARAMETERS (0X8B/139) 97

Command Class Time DateGet

Syntax: DateGet(successCallback = NULL, failureCallback = NULL)

Description: Send Time DateGet

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Command Class Time OffsetGet

Syntax: OffsetGet(successCallback = NULL, failureCallback = NULL)

Description: Send Time TimeOffsetGet

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

7.39 Command Class TimeParameters (0x8b/139)

Command Class TimeParameters Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send TimeParameters Get

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Command Class TimeParameters Set

Syntax: Set(successCallback = NULL, failureCallback = NULL)

Description: Send TimeParameters Set

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

98 CHAPTER 7. COMMAND CLASS REFERENCE

7.40 Command Class Wakeup (0x84/132)

The wakeup command class handles the wakeup behavior of devices with wakeup interval
Command Class values in data holder:

• default: default wakeup interval (constant), only filled if device support Wakeup Command
Class Version 2

• interval: wakeup interval in seconds

• lastSleep: UNIX time stamp of last sleep() command sent

• lastWakeup: UNIX time stamp of last wakeup notification() received

• max: maximum accepted wakeup interval (constant), only filled if device support Wakeup
Command Class Version 2

• min: min. allowed wakeup interval (constant), only filled if device support Wakeup Com-
mand Class Version 2

• nodeId: Node ID of the device that will receive the wakeup notification of this device

• step: step size of wakeup interval setting allows (constant), only filled if device support
Wakeup Command Class Version 2

Command Wakeup Get

Syntax: Get(successCallback = NULL, failureCallback = NULL)

Description: Send Wakeup Get

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder ”interval” is updated

Command Wakeup Sleep

Syntax: Sleep(successCallback = NULL, failureCallback = NULL)

Description: Send Wakeup NoMoreInformation (Sleep)

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Return: data holder ”lastsleep” is updated

7.41. OTHER COMMAND CLASSES NOT EXPOSED ON THE API 99

Command Wakeup Set

Syntax: Set(interval, notificationNodeId, successCallback = NULL, failureCallback
= NULL)

Description: Send Wakeup Set

Parameter interval: Wakeup interval in seconds

Parameter notificationNodeId: Node Id to be notified about wakeup

Return: data holder ”interval” and ”nodeId” is updated

7.41 Other command classes not exposed on the API

There are few other command classes needed for maintenance behind the scenes:

• ApplicationStatus

• AssociationGroupInformation

• CRC16

• Security

• DeviceResetLocally

• ManufacturerSpecific

• MultiChannel

• MultiChannelAssociation

• Version

• MultiCmd

• NoOperation

• ZWavePlusInfo

100 CHAPTER 7. COMMAND CLASS REFERENCE

Chapter 8

Function Class Reference

Function Class SerialAPIGetInitData

Syntax: SerialAPIGetInitData(successCallback = NULL, failureCallback = NULL)

Description: Request initial information about devices in network

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Function Class SerialAPIApplicationNodeInfo

Syntax: SerialAPIApplicationNodeInfo(listening, optional, flirs1000, flirs250, gener-
icClass, specificClass, nif, successCallback = NULL, failureCallback = NULL)

Description: Set controller node information

Parameter listening: Listening flag

Parameter optional: Optional flag (set if device supports more CCs than described
as mandatory for it’s Device Type)

Parameter flirs1000: FLiRS 1000 flag (hardware have to be based on FLiRS library
to support it)

Parameter flirs250: FLiRS 250 flag (hardware have to be based on FLiRS library to
support it)

Parameter genericClass: Generic Device Type

Parameter specificClass: Specific Device Type

Parameter nif: New NIF

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

101

102 CHAPTER 8. FUNCTION CLASS REFERENCE

Function Class GetControllerCapabilities

Syntax: GetControllerCapabilities(successCallback = NULL, failureCallback = NULL)

Description: Request controller capabilities (primary role, SUC/SIS availability)

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Function Class GetVersion

Syntax: GetVersion(successCallback = NULL, failureCallback = NULL)

Description: Request controller hardware version

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Function Class IsFailedNode

Syntax: IsFailedNode(nodeId, successCallback = NULL, failureCallback = NULL)

Description: Checks if node is failed

Parameter nodeId: Node Id to be checked

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Function Class SerialAPISoftReset

Syntax: SerialAPISoftReset(successCallback = NULL, failureCallback = NULL)

Description: Soft reset. Restarts Z-Wave chip

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

103

Function Class GetNodeProtocolInfo

Syntax: GetNodeProtocolInfo(nodeId, successCallback = NULL, failureCallback =
NULL)

Description: Get node protocol info

Parameter nodeId: Node Id of the device in question

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Function Class GetRoutingTableLine

Syntax: GetRoutingTableLine(nodeId, removeBad = False, removeRepeaters = False,
successCallback = NULL, failureCallback = NULL)

Description: Get routing table line

Parameter nodeId: Node Id of the device in question

Parameter removeBad: Exclude failed nodes from the listing

Parameter removeRepeaters: Exclude repeater nodes from the listing

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Function Class AssignReturnRoute

Syntax: AssignReturnRoute(nodeId, destId, successCallback = NULL, failureCall-
back = NULL)

Description: Assign return route to specified node. Get Serial API capabilities

Parameter nodeId: Node Id of the device that have to store new route

Parameter destId: Destination Node Id of the route

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

104 CHAPTER 8. FUNCTION CLASS REFERENCE

Function Class DeleteReturnRoute

Syntax: DeleteReturnRoute(nodeId, successCallback = NULL, failureCallback =
NULL)

Description: Delete return route

Parameter nodeId: Node Id of the device that have to delete all assigned return
routes

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Function Class SetDefault

Syntax: SetDefault(successCallback = NULL, failureCallback = NULL)

Description: Reset the controller. Note: this function will delete ALL data from the
Z-Wave chip and restore it to factory default! Z-Wave transceiver firmares based on
4.5x and 6.x+ SDKs will also generate a new Home Id.

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Function Class SendNodeInformation

Syntax: SendNodeInformation(nodeId, successCallback = NULL, failureCallback =
NULL)

Description: Send NIF of the transceiver to nodeId

Parameter nodeId: Destination Node Id (NODE BROADCAST to send non-routed
broadcast packet)

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Function Class RequestNodeInformation

Syntax: RequestNodeInformation(nodeId, successCallback = NULL, failureCallback
= NULL)

Description: Request NIF of a device

Parameter nodeId: Node Id to be requested for a NIF

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

105

Function Class RemoveFailedNode

Syntax: RemoveFailedNode(nodeId, successCallback = NULL, failureCallback =
NULL)

Description: Remove failed node from network. Before removing the transceiver
firmware will check that the device is really unreachable

Parameter nodeId: Node Id to be removed from network

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Function Class ReplaceFailedNode

Syntax: ReplaceFailedNode(nodeId, successCallback = None, failureCallback = None)

Description: Replace failed node with a new one. Be aware that a failed node can
be replaced by a node of another type. This can lead to problems. Always request
device NIF and force re-interview after successful replace process.

Parameter nodeId: Node Id to be replaced by new one

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Function Class RequestNetworkUpdate

Syntax: RequestNetworkUpdate(successCallback = NULL, failureCallback = NULL)

Description: Request network topology update from SUC/SIS. Note that this process
may also fail due more than 64 changes from last sync. In this case a re-inclusion of
the controller (self) is required.

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Function Class RequestNodeNeighbourUpdate

Syntax: RequestNodeNeighbourUpdate(nodeId, successCallback = NULL, failure-
Callback = NULL)

Description: Request neighbours update for specific node

Parameter nodeId: Node Id to be requested for its neighbours

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

106 CHAPTER 8. FUNCTION CLASS REFERENCE

Function Class SetLearnMode

Syntax: SetLearnMode(startStop, successCallback = NULL, failureCallback = NULL)

Description: Set/stop Learn mode

Parameter startStop: Start Learn mode if True, stop if False

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Function Class AddNodeToNetwork

Syntax: AddNodeToNetwork(startStop, highPower = True, successCallback = NULL,
failureCallback = NULL)

Description: Start/stop Inclusion of a new node. Available on primary and inclusion
controllers

Parameter startStop: Start inclusion mode if True, stop if False

Parameter highPower: Use full power during this operation if True. On False use low
power mode.

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Function Class RemoveNodeFromNetwork

Syntax: RemoveNodeFromNetwork(startStop, highPower = False, successCallback
= NULL, failureCallback = NULL)

Description: Start/stop exclusion of a node. Note that this function can be used
to exclude a device from previous network before including in ours. Available on
primary and inclusion controllers.

Parameter startStop: Start exclusion mode if True, stop if False

Parameter highPower: Use full power during this operation if True. On False use low
power mode.

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

107

Function Class ControllerChange

Syntax: ControllerChange(startStop, highPower = False, successCallback = NULL,
failureCallback = NULL)

Description: Set new primary controller (also known as Controller Shift). Same as
Inclusion, but the newly included device will get the role of primary. Available only
on primary controller.

Parameter startStop: Start controller shift mode if True, stop if False.

Parameter highPower: Use full power during this operation if True. On False use low
power mode.

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Function Class CreateNewPrimary

Syntax: CreateNewPrimary(startStop, successCallback = NULL, failureCallback =
NULL)

Description: Create new primary controller by SUC controller. Same as Inclusion, but
the newly included device will get the role of primary.. Available only on SUC.. Be
careful not to create two primary controllers! This can lead to network malfunction!

Parameter startStop: Start create new primary mode if True, stop if False

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

Function Class ZMEFreqChange

Syntax: ZMEFreqChange(freq, successCallback = NULL, failureCallback = NULL)

Description: Change Transceiver frequency for Z-Wave ICs supporting the SRD 860
frequency band. This function is specific for Z-Wave.Me hardware

Parameter freq: 0 for EU, 1 for RU, 2 for IND

Parameter successCallback: Custom function to be called on function success. NULL
if callback is not needed

Parameter failureCallback: Custom function to be called on function failure. NULL
if callback is not needed

	Introduction and Overview
	How to use Z-Way
	Quick Start
	API Overview
	Z-Wave Device API
	Third Party Technology API
	JavaScript API (JS API)
	Virtual Device API
	Comparison

	The Z-Wave Device API
	Executing a command from the GUI to the device and back
	The Z-Wave Device API Data model
	The Data object
	The Data and Method Tree
	Device Data Visualization
	Commands to control Z-Way itself
	Job Queue Handling

	Function Class Implementation
	Inclusion
	Exclusion
	Mark Battery powered devices as failed
	Remove Failed Nodes
	Include into different network
	Z-Wave chip reboot
	Request NIF from all devices
	Send controllers NIF
	Reset Controller
	Change Controller
	Routing Table

	JSON-API
	/ZWaveAPI/Run/<command>
	/ZWaveAPI/InspectQueue
	/ZWaveAPI/Data/<timestamp>
	Handling of updates coming from Z-Way

	Command Class Implementation
	Switch Overview
	Sensor Overview
	Meter Overview
	Thermostat Overview
	Door Lock Overview
	Device Configuration
	Interview Process
	Device Configuration
	Associations

	JavaScript API
	The JavaScript Engine
	Accessing the JS API
	HTTP Access
	Authentication
	Roles and Login
	Creating Profile

	XML parser
	var x = new ZXmlDocument()
	x = new ZXmlDocument("xml content")
	x.root
	x.isXML
	x.toString()
	x.findOne(XPathString)
	x.findAll(XPathString)
	XML elements

	Other JavaScript Extensions
	Debugging JavaScript code

	The Automation Subsystem
	How to get to the automation engine
	The Event Bus
	Emitting events
	Catching (binding to) events

	Module-Syntax
	Module.json
	index.js

	Available Core Modules
	Cron, the timer module
	The Virtual Device Module
	DeviceCollection module

	Virtual Device API (vDev)
	The virtual device
	Types and Ids
	Virtual Device Ids
	Virtual Device Type
	Access to Virtual Devices
	Virtual Device Usage / Commands
	Virtual Device Usage / Values
	How to create your own virtual devices

	Notifications and events

	Z-Way Data Model Reference
	zway
	controller
	Devices
	Device
	Instances
	CommandClass

	Data

	Command Class Reference
	FirmwareUpdate (0x7A/122)
	Alarm (0x71/113)
	Command Class Alarm Sensor (0x9c/156)
	Command Class Association (0x85/133)
	Command Class Basic (0x20/32)
	Command Class Battery (0x80/128)
	CentralScene (0x5B/91)
	ClimateControlSchedule (0x46/70)
	Command Class Clock (0x81/129)
	Command Class Configuration(0x70/112)
	Command Class DoorLock (0x62/98)
	Command Class Door Lock Logging (0x4C/76)
	Command Class Indicator (0x87/135)
	Command Class Meter (0x32/50)
	MeterTableMonitor (0x3D/61)
	Command Class Multichannel Association (0x8e/142)
	Command Class NodeNaming (0x77/119)
	PowerLevel (0x73/115)
	Command Class Protection (0x75/117)
	Command Class SceneActivation(0x2B/43)
	Command Class SceneControllerConf (0x2d/45)
	Command Class SceneActuatorConf (0x2C/44)
	Schedule (0x53/83)
	Command Class ScheduleEntryLock (0x4e/78)
	Command Class SensorBinary (0x30/48)
	Command Class Sensor Configuration (0x9e/158)
	Command Class Sensor Multilevel (0x31/49)
	Command Class Switch All (0x27/39)
	Command Class SwitchColor (0x33/51)
	Command Class SwitchBinary(0x25/37)
	Command Class SwitchMultilevel (0x26/38)
	Command Class ThermostatFanMode(0x44/68)
	Command Class ThermostatFanState(0x45/69)
	Command Class ThermostatMode (0x40/64)
	Command Class ThermostatOperatingState (0x42/66)
	Command Class ThermostatSetPoint (0x43/67)
	Command Class UserCode (0x63/99)
	Command Class Time (0x8a/138)
	Command Class TimeParameters (0x8b/139)
	Command Class Wakeup (0x84/132)
	Other command classes not exposed on the API

	Function Class Reference

